Anodic HfO2 crossbar arrays for hydroxide-based memristive sensing in liquids
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1644Keywords:
Memristors, anodic oxides, ultra-thin films, liquid detection, valve metals
Abstract
The development of miniaturized and portable sensing devices is crucial to meeting the high processing capacity demands of contemporary computing systems. Hence, the conceptualization of memristive sensors for hydroxide-containing liquids is proposed in this study. Metal-insulator-metal (MIM) structures were formed on electrochemically anodized Hf thin films with Pt patterned as top electrodes. These MIM memristive structures were integrated into a crossbar array, allowing the investigation of a high number of potential memristor sensors. The MIM structures have demonstrated sensing possibilities in the detection of the hydroxyl ion in D-glucose, used as a standard solution. The sensing method was based on the resistive state ratio extracted from I-U sweeps measurements. Analytical characterization of the memristor sensor was done based on the resistive state ratio in relation to different concentrations of a standard solution drop cast directly on the surface of the device. Linearity was found for D-glucose concentrations ranging from 10 mM to 80 mM with a reasonable corresponding correlation factor (R2=0.96809). Additionally, D-glucose incorporation in anodic oxide was studied by XPS to investigate its effect on conductive filaments formation. A carbon bonded by a single covalent bond to oxygen (O-C-O) was detected, confirming the proposed sensing mechanism defined by the glucose penetrating the oxide/electrode interface.
Downloads
References
I. H. Im, S. J. Kim, H. W. Jang, Memristive Devices for New Computing Paradigms, Advanced Intelligent Systems 2 (2020) 2000105. https://doi.org/10.1002/aisy.202000105
S. Carrara, The Birth of a New Field: Memristive Sensors. A Review, IEEE Sensors Journal 21 (2021) 12370-12378. https://doi.org/10.1109/JSEN.2020.3043305
K. Sun, J. Chen, X. Yan, The Future of Memristors: Materials Engineering and Neural Networks, Advanced Functional Materials 31 (2021) 2006773. https://doi.org/10.1002/adfm.202006773
A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Memory devices and applications for in-memory computing, Nature Nanotechnology 15 (2020) 529-544. https://doi.org/10.1038/s41565-020-0655-z
X. Zhang, A. Huang, Q. Hu, Z. Xiao, P.K. Chu, Neuromorphic Computing with Memristor Crossbar, Physica Status Solidi A 215 (2018) 1700875. https://doi.org/10.1002/pssa.201700875
N.S. Mohamad Hadis, A. Abd Manaf, S. H. Ngalim, S.H. Herman, Fabrication and characterisation of fluidic based memristor sensor for liquid with hydroxyl group, Sensing and Bio-Sensing Research 14 (2017) 21-29. https://doi.org/10.1016/j.sbsr.2017.04.002
Y. Meng, J. Zhu, Low energy consumption fiber-type memristor array with integrated sensing-memory, Nanoscale Advances 4 (2022) 1098-1104. https://doi.org/10.1039/d1na00703c
Y. Zhou, Y. Li, L. Xu, S. Zhong, R. Xu, X. Miao, A hybrid memristor-CMOS XOR gate for nonvolatile logic computation, Physica Status Solidi A 213 (2016) 1050-1054. https://doi.org/10.1002/pssa.201532872
G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat, M. Le Gallo, K. Moon, J. Woo, H. Hwang, Y. Leblebici, Neuromorphic computing using nonvolatile memory, Advances in Physics: X 2 (2017) 89-124. https://doi.org/10.1080/23746149.2016.1259585
A. Irmanova, A.P. James, Multi-level memristive memory with resistive networks, Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics, Kuala Lumpur, Malaysia, 31 October - 2 November 2017, 69-72. https://doi.org/10.1109/PRIMEASIA.2017.8280366
T. Y. Wang, J. L. Meng, Q. X. Li, Z.Y. He, H. Zhu, L. Ji, Q. Q. Sun, L. Chen, D. W. Zhang, Reconfigurable optoelectronic memristor for in-sensor computing applications, Nano Energy 89 (2021) 106291. https://doi.org/10.1016/j.nanoen.2021.106291
B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H.A. Nahla, M. Al-Qutayri, N. Christoforou, State of the art of metal oxide memristor devices, Nanotechnology Reviews 5 (2016) 311-329. https://doi.org/10.1515/ntrev-2015-0029
A. K. Parit, M. S. Yadav, A. K. Gupta, A. Mikhaylov, B. Rawat, Design and modeling of niobium oxide-tantalum oxide based self-selective memristor for large-scale crossbar memory, Chaos, Solitons and Fractals 145 (2021) 110818. https://doi.org/10.1016/j.chaos.2021.110818
L. Shi, G. Zheng, B. Tian, B. Dkhil, C. Duan, Research progress on solutions to the sneak path issue in memristor crossbar arrays, Nanoscale Advances 2 (2020) 1811-1827. https://doi.org/10.1039/d0na00100g
S. Choi, S. Jang, J. H. Moon, J. C. Kim, H. Y. Jeong, P. Jang, K. J. Lee, G. Wang, A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems, NPG Asia Materials 10 (2018) 1097-1106. https://doi.org/10.1038/s41427-018-0101-y
S. Dirkmann, J. Kaiser, C. Wenger, T. Mussenbrock, Filament Growth and Resistive Switching in Hafnium Oxide Memristive Devices, ACS Applied Materials & Interfaces 10 (2018) 14857-14868. https://doi.org/10.1021/acsami.7b19836
T. Mikolajick, H. Wylezich, H. Maehne, S. Slesazeck, Versatile resistive switching in niobium oxide, Proceedings - IEEE International Symposium on Circuits and Systems, Montreal, QC, Canada, 22-25 May 2016, 381-384. https://doi.org/10.1109/ISCAS.2016.7527250
I. Zrinski, C. C. Mardare, L.-I. Jinga, J. P. Kollender, G. Socol, A. W. Hassel, A. I. Mardare, Phosphate incorporation in anodic hafnium oxide memristors, Applied Surface Science 548 (2021) 149093. https://doi.org/10.1016/j.apsusc.2021.149093
H. Abunahla, M. A. Jaoude, C. J. O’Kelly, Y. Halawani, M. Al-Qutayri, S. F. Al-Sarawi, B. Mohammad, Switching characteristics of microscale unipolar Pd/Hf/HfO2/Pd memristors, Microelectronic Engeering 185–186 (2018) 35-42. https://doi.org/10.1016/j.mee.2017.10.010
I. Zrinski, A. Minenkov, C. Cancellieri, R. Hauert, C. C. Mardare, J. P. Kollender, L. P. H. Jeurgens, H. Groiss, A. W. Hassel, A. I. Mardare, Mixed anodic oxides for forming-free memristors revealed by combinatorial screening of hafnium-tantalum system, Applied Materials Today 26 (2022) 101270. https://doi.org/10.1016/j.apmt.2021.101270
S. Saylan, M. A. Jaoude, K. Humood, F. Ravaux, H. F. A. Shehhi, B. Mohammad, Silver/(sub-10 nm)hafnium-oxide-based resistive switching devices on silicon: Characteristics and switching mechanism, Nanotechnology 31 (2020) 165202. https://doi.org/10.1088/1361-6528/ab68fb
S. Chen, S. Noori, M. A. Villena, Y. Shi, T. Han, Y. Zuo, M. P. Pedeferri, D. Strukov, M. Lanza, M.V. Diamanti, Memristive electronic synapses made by anodic oxidation, Chemistry of Materials 31 (2019) 8394-8401. https://doi.org/10.1021/acs.chemmater.9b02245
S. M. Edlou, A. Smajkiewicz, G. A. Al-Jumaily, Optical properties and environmental stability of oxide coatings deposited by reactive sputtering, Applied Optics 32 (1993) 5601. https://doi.org/10.1364/ao.32.005601
P. S. Lysaght, B. Foran, G. Bersuker, P. J. Chen, R. W. Murto, H.R. Huff, Physicochemical properties of HfO2 in response to rapid thermal anneal, Applied Physics Letters 82 (2003) 1266-1268. https://doi.org/10.1063/1.1553998
P. Baumeister, O. Arnon, Use of hafnium dioxide in multilayer dielectric reflectors for the near uv, Applied Optics 16 (1977) 439. https://doi.org/10.1364/ao.16.000439
M. Gilo, N. Croitoru, Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source, Thin Solid Films 350 (1999) 203-208. https://doi.org/10.1016/S0040-6090(99)00226-6
D. Reicher, P. Black, K. Jungling, Defect formation in hafnium dioxide thin films, Applied Optics 39 (2000) 1589. https://doi.org/10.1364/ao.39.001589
J. Lu, Y. Kuo, J.-Y. Tewg, Hafnium-Doped Tantalum Oxide High-k Gate Dielectrics, Journal of The Electrochemical Society 153 (2006) G410 https://doi.org/10.1149/1.2180647
J. L. Courouau, J. Fouletier, M. C. Steil, HfO2-based electrolyte potentiometric oxygen sensors for liquid sodium, Electrochimica Acta 331 (2020) 135269. https://doi.org/10.1016/j.electacta.2019.135269
V. Dave, P. K. Mishra, R. Chandra, Nanostructured Hafnium Oxide Thin films for Sensing Carbon Monoxide: An Experimental Investigation, Materials Today: Proceedings 5 (2018) 23286-23292. https://doi.org/10.1016/j.matpr.2018.11.062
N. S. M. Hadis, A. A. Manaf, S. H. Herman, S. H. Ngalim, High Roff/Ron ratio liquid based memristor sensor using sol gel spin coating technique, Proceedings of IEEE Sensors, Busan, Korea,1-4 November 2015. https://doi.org/10.1109/ICSENS.2015.7370379
X. Bi, C. Zhang, H. Li, Y. Chen, R. E. Pino, Spintronic memristor based temperature sensor design with CMOS current reference, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dreseden, Germany, 12-16 March 2012, 1301-1306. https://doi.org/10.1109/date.2012.6176693
S. Carrara, D. Sacchetto, M. A. Doucey, C. Baj-Rossi, G. De Micheli, Y. Leblebici, Memristive-biosensors: A new detection method by using nanofabricated memristors, Sensors and Actuators B 171-172 (2012) 449-457. https://doi.org/10.1016/j.snb.2012.04.089
F. Puppo, M. A. Doucey, M. Di Ventra, G. De Micheli, S. Carrara, Memristor-based devices for sensing, IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Victoria, Australia, 1-5 June 2014, 2257-2260. https://doi.org/10.1109/ISCAS.2014.6865620
I. Zrinski, C. C. Mardare, L.-I. Jinga, J. P. Kollender, G. Socol, A. W. Hassel, A. I. Mardare, Phosphate incorporation in anodic hafnium oxide memristors, Applied Surface Science 548 (2021) 149093. https://doi.org/10.1016/j.apsusc.2021.149093
I. Zrinski, C. C. Mardare, L. I. Jinga, J. P. Kollender, G. Socol, A. Minenkov, A. W. Hassel, A. I. Mardare, Electrolyte ‐ Dependent Modification of Resistive Switching in Anodic Hafnia, Nanomaterials 11(3) (2021) 666. https://doi.org/10.3390/nano11030666
Sodium phosphate, Cold Spring Harbor Protocols, 2006. https://doi.org/10.1101/pdb.rec8303
G. S. Kim, T. H. Park, H. J. Kim, T. J. Ha, W. Y. Park, S. G. Kim, C. S. Hwang, Investigation of the retention performance of an ultra-thin HfO2 resistance switching layer in an integrated memory device, Journal of Applied Physics 124 (2018) 024102. https://doi.org/10.1063/1.5033967
I. Zrinski, M. Löfler, J. Zavašnik, C. Cancellieri, L. P. H. Jeurgens, A. W. Hassel, A. I. Mardare, Impact of Electrolyte Incorporation in Anodized Niobium on Its Resistive Switching, Nanomaterials 12 (2022) 813. https://doi.org/10.3390/nano12050813
N. S. M. Hadis, A. A. Manaf, S. H. Herman, Characterization of ROFF/RON ratio of fluidic based memristor sensor for pH detection, 2015 IEEE Regional Symposium on Micro and Nanoelectronics, Kuala Terengganu, Malaysia, 19-21 August 2015. https://doi.org/10.1109/RSM.2015.7354956
G. Beamson, D. Briggs, An International Journal at the Interface Between Chemistry and Physics High resolution monochromated X-ray photoelectron spectroscopy of organic polymers: A comparison between solid state data for organic polymers and gas phase data, Molecular Physics 75(4) (1992) 37-41. https://doi.org/10.1080/00268979200101761-
D. Briggs, X-ray photoelectron spectroscopy (XPS), Handbook of Adhesion, Second Edition (2005) 621-622 https://doi.org/10.1002/0470014229.ch22
D. Barreca, A. Milanov, R. A. Fischer, A. Devi, E. Tondello, Hafnium oxide thin film grown by ALD: An XPS study, Surface Science Spectra 14 (2007) 34-40. https://doi.org/10.1116/11.20080401
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Austrian Science Fund
Grant numbers P 32847-N