Self-healing efficiency of ceria-doped Zn-Co coatings: Insights into particle-free versus biphasic plating baths

Original scientific paper

Authors

  • Marija Mitrović University of East Sarajevo, Faculty of Technology Zvornik, Karakaj 34A 75400 Zvornik, Republic of Srpska, Bosnia and Herzegovina https://orcid.org/0000-0002-3208-016X
  • Anđela Simović University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia https://orcid.org/0000-0003-4026-5647
  • Regina Fuchs-Godec University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia https://orcid.org/0000-0002-5700-0963
  • Milorad Тоmić University of East Sarajevo, Faculty of Technology Zvornik, Karakaj 34A 75400 Zvornik, Republic of Srpska, Bosnia and Herzegovina and Engineering Academy of Serbia, Kneza Miloša 9/I, 11000 Belgrade, Serbia https://orcid.org/0009-0004-1022-2093
  • Jelena Bajat University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia https://orcid.org/0000-0003-0742-8176

DOI:

https://doi.org/10.5599/jese.2522

Keywords:

Zn-Co-CeO2, smart nanomaterials, self-repair, ceria-doping, nanocomposite
Graphical Abstract

Abstract

Achieving the superior properties of nanocomposite materials involves addressing several challenges, particularly the agglomeration of nanoparticles in the plating bath. This study focuses on the electrodeposition and characterization of Zn-Co-CeO2 composite coatings using a particle-free plating bath, which is an effective strategy to mitigate agglo¬meration. For comparison, the composite coatings were also deposited from a traditional biphasic plating solution. The coatings were deposited galvanostatically, at various current densities. Scanning electron microscopy revealed that using a particles free plating solution in conjunction with lower current densities enhanced the compactness and the overall quality of the coatings. Lower current densities favoured the codeposition of particles, as indicated by energy-dispersive X-ray spectroscopy results. Notably, the coatings produced from the particle-free bath exhibited significantly improved corrosion resistance and durability in chloride-rich environments, attributed to their self-healing properties, as shown by electrochemical impedance spectroscopy.

Downloads

Download data is not yet available.

References

A. Vlasa, S. Varvara, A. Pop, C. Bulea, L. M. Muresan, Electrodeposited Zn–TiO2 nanocomposite coatings and their corrosion behavior, Journal of Applied Electrochemistry 40 (2010) 1519-1527. https://doi.org/10.1007/s10800-010-0130-x

K. Vathsala, T. V. Venkatesha, Zn–ZrO2 nanocomposite coatings: Elecrodeposition and evaluation of corrosion resistance, Applied Surface Science 257(21) (2011) 8929-8936. https://doi.org/10.1016/j.apsusc.2011.05.0

M. Sajjadnejad, S. Karkon, S. M. S. Haghshenas, Corrosion characteristics of Zn-TiO2 nanocomposite coatings fabricated by electro-codeposition process, Advanced Journal of Chemistry A 7(2) (2024) 209-226. https://doi.org/10.48309/ajca.2024.418391.1425

K. K. Maniam, S. Paul, Corrosion performance of electrodeposited zinc and zinc-alloy coatings in marine environment, Corrosion and Materials Degradation 2(2) (2021) 163-189. https://doi.org/10.3390/cmd2020010

C. M. P. Kumar, A. Lakshmikanthan, M. P. G. Chandrashekarappa, D. Y. Pimenov, K. Giasin, Electrodeposition based preparation of Zn–Ni alloy and Zn–Ni–WC nano-composite coatings for corrosion-resistant applications, Coatings 11(6) (2021) 712. https://doi.org/10.3390/coatings11060712

M. Klekotka, K. Zielińska, A. Stankiewicz, M. Kuciej, Tribological and anticorrosion performance of electroplated zinc based nanocomposite coatings, Coatings 10)6) (2020) 594. https://doi.org/10.3390/coatings10060594

M. Egbuhuzor, C. Akalezi, S. Ulaeto, D. Njoku, B. Onyeachu, E. Oguzie, Electro-deposited nanocomposite coatings and their behaviours against aqueous and high-temperature corrosion: A review, Hybrid Advances 5 (2024) 100180. https://doi.org/10.1016/j.hybadv.2024.100180

A. Cabral, A. O. Junior, G. Koga, I. Rigoli, C. Rocha, C. Souza, Electrodeposited Zinc Cellulose Nanocrystals Composite Coatings: Morphology, Structure, Corrosion Resistance and Electrodeposition Process, Journal of Materials Research and Technology 33 (2024) 1569-1580 https://doi.org/10.1016/j.jmrt.2024.09.153

M. M. K. Azar, H. S. Gugtapeh, M. Rezaei, Evaluation of corrosion protection performance of electroplated zinc and zinc-graphene oxide nanocomposite coatings in air saturated 3.5 wt.% NaCl solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects 601 (2020) 125051. https://doi.org/10.1016/j.colsurfa.2020.125051

S. Anwar, F. Khan, Y. Zhang, Corrosion behaviour of Zn-Ni alloy and Zn-Ni-nano-TiO2 composite coatings electrodeposited from ammonium citrate baths, Process Safety and Environmental Protection 141 (2020) 366-379. https://doi.org/10.1016/j.psep.2020.05.048

H. Srivastav, A. Z. Weber, C. J. Radke, Colloidal Stability of PFSA-Ionomer Dispersions. Part I. Single-Ion Electrostatic Interaction Potential Energies, Langmuir 40(13) (2024) 6654-6665. https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.3c03903

M. Riđošić, M. Bučko, A. Salicio-Paz, E. García-Lecina, L. S. Živković, J. B. Bajat, Ceria particles as efficient dopant in the electrodeposition of Zn-Co-CeO2 composite coatings with enhanced corrosion resistance: The effect of current density and particle concentration, Molecules 26(15) (2021) 4578. https://doi.org/10.3390/molecules26154578

R. Daneshfar, B. S. Soulgani, S. Ashoori, Identifying the mechanisms behind the stability of silica nano-and micro-particles: effects of particle size, electrolyte concentration and type of ionic species, Journal of Molecular Liquids 397 (2024) 124059. https://doi.org/10.1016/j.molliq.2024.124059

X. Wang, T. Sun, H. Zhu, T. Han, J. Wang, H. Dai, Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles, Journal of Environmental Management 267 (2020) 110656. https://doi.org/10.1016/j.jenvman.2020.110656

M. Riđošić, A. Salicio-Paz, E. Garcia-Lecina, P. Zabinski, L. S. Živković, J. B. Bajat, The effect of the ultrasound agitation and source of ceria particles on the morphology and structure of the Zn–Co–CeO2 composite coatings, Journal of Materials Research and Technology 13 (2021) 1336-1349. https://doi.org/10.1016/j.jmrt.2021.05.064

M. Bucko, M. Riđošić, J. Kovačina, M. Tomić, J. Bajat, Hardness and corrosion resistance of Zn− Mn/Al2O3 composite coatings produced by electrochemical deposition, Indian Journal of Engineering and Materials Sciences 29(4) (2022) 540-549. http://op.niscpr.res.in/index.php/IJEMS/article/view/47785/0

M. Riđošić, N. D. Nikolić, A. Salicio-Paz, E. García-Lecina, L. S. Živković, J. B. Bajat, Zn-Co-CeO2 vs. Zn-Co Coatings: Effect of CeO2 Sol in the Enhancement of the Corrosion Performance of Electrodeposited Composite Coatings, Metals 11(5) (2021) 704. https://doi.org/10.3390/met11050704

J. M. Costa, A. F. de Almeida Neto, Ultrasound-assisted electrodeposition and synthesis of alloys and composite materials: A review, Ultrasonics Sonochemistry 68 (2020) 105193. https://doi.org/10.1016/j.ultsonch.2020.105193

M. Akbarpour, F. G. Asl, Fabrication of high-performance graphene/nickel-cobalt composite coatings using ultrasonic-assisted pulse electrodeposition, Ceramics International 49(9) (2023) 13829-13835. https://doi.org/10.1016/j.ceramint.2022.12.262

C. Liu, X. Huang, R. Xu, Y. Mai, L. Zhang, X. Jie, Microstructure and properties of nanocrystalline Ni-Mo coatings prepared by ultrasound-assisted pulse electrodeposition, Journal of Materials Engineering and Performance 30 (2021) 2514-2525. https://doi.org/10.1007/s11665-021-05570-1

H. Zhang, J. Wang, S. Chen, H. Wang, Y. He, C. Ma, Ni–SiC composite coatings with improved wear and corrosion resistance synthesized via ultrasonic electrodeposition, Ceramics International 47(7) (2021) 9437-9446. https://doi.org/10.1016/j.ceramint.2020.12.076

C. Ma, D. Zhao, F. Xia, H. Xia, T. Williams, H. Xing, Ultrasonic-assisted electrodeposition of Ni-Al2O3 nanocomposites at various ultrasonic powers, Ceramics International 46(5) (2020) 6115-6123. https://doi.org/10.1016/j.ceramint.2019.11.075

X. Gong, M. Luo, M. Wang, W. Niu, Y. Wang, B. Lei, Injectable self-healing ceria-based nanocomposite hydrogel with ROS-scavenging activity for skin wound repair, Regenerative Biomaterials 9 (2022) rbab074. https://doi.org/10.1093/rb/rbab074

S. V. Harb, A. Trentin, T. A. C. de Souza, M. Magnani, S. H. Pulcinelli, C. V. Santilli, P. Hammer, Effective corrosion protection by eco-friendly self-healing PMMA-cerium oxide coatings, Chemical Engineering Journal 383 (2020) 123219. https://doi.org/10.1016/j.cej.2019.123219

V. Hernández-Montes, R. Buitrago-Sierra, M. Echeverry-Rendón, J. Santa-Marín, Ceria-based coatings on magnesium alloys for biomedical applications: a literature review, RSC Advances 13(2) (2023) 1422-1433. https://doi.org/10.1039/D2RA06312C

B. Fotovvat, M. Behzadnasab, S. Mirabedini, H. E. Mohammadloo, Anti-corrosion performance and mechanical properties of epoxy coatings containing microcapsules filled with linseed oil and modified ceria nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 648 (2022) 129157. https://doi.org/10.1016/j.colsurfa.2022.129157

S. Habib, E. Fayyad, M. Nawaz, A. Khan, R. A. Shakoor, R. Kahraman, A. Abdullah, Cerium dioxide nanoparticles as smart carriers for self-healing coatings, Nanomaterials 10(4) (2020) 791. https://doi.org/10.3390/nano10040791

H. Zhang, H. Bian, X. Zhang, L. Zhang, Y. Chen, Y. Yang, Z. Zhang, Preparation and characterization of hollow ceria based smart anti-corrosive coatings on copper, Surfaces and Interfaces 45 (2024) 103930. https://doi.org/10.1016/j.surfin.2024.103930

A. Kirdeikiene, O. Girčiene, L. Gudavičiūte, V. Jasulaitiene, A. Selskis, S. Tutliene, M. Skruodiene, J. Pilipavičius, J. Juodkazyte, R. Ramanauskas, Self-healing properties of cerium-modified molybdate conversion coating on steel, Coatings 11(2) (2021) 194. https://doi.org/10.3390/coatings11020194

S. V. Kozhukharov, C. Girginov, N. Boshkova, A. Tzanev, Impact of the final thermal sealing of combined zinc/cerium oxide protective coating primers formed on low carbon steel. Journal of Electrochemical Science and Engineering 12(4) (2022) 685-701. http://dx.doi.org/10.5599/jese.1297

J. Gulicovski, J. Bajat, V. Mišković-Stanković, B. Jokić, V. Panić, S. Milonjić, Cerium oxide as conversion coating for the corrosion protection of aluminum, Journal of Electrochemical Science and Engineering 3(4) (2013) 151-156. https://doi.org/10.5599/jese.2013.0037

L. Exbrayat, C. Rébéré, R. Milet, E. Calvié, P. Steyer, J. Creus, Corrosion Behavior in Saline Solution of Electrodeposited Nanocomposite Zn-CeO2 Coatings Deposited onto Low Alloyed Steel, Coatings 13(10) (2023) 1688. https://doi.org/10.3390/coatings13101688

P. I. Nemes, M. Lekka, L. Fedrizzi, L. M. Muresan, Influence of the electrodeposition current regime on the corrosion resistance of Zn-CeO2 nanocomposite coatings, Surface and Coatings Technology 252 (2014) 102-107. https://doi.org/10.1016/j.surfcoat.2014.04.051

S. Ranganatha, T. Venkatesha, K. Vathsala, Electrochemical studies on Zn/nano-CeO2 electrodeposited composite coatings, Surface and Coatings Technology 208 (2012) 64-72. https://doi.org/10.1016/j.surfcoat.2012.08.004

S. Lajevardi, T. Shahrabi, Effects of pulse electrodeposition parameters on the properties of Ni–TiO2 nanocomposite coatings, Applied Surface Science 256(22) (2010) 6775-6781. https://doi.org/10.1016/j.apsusc.2010.04.088

E. Beltowska-Lehman, P. Indyka, A. Bigos, M. J. Szczerba, J. Guspiel, H. Koscielny, M. Kot, Effect of current density on properties of Ni–W nanocomposite coatings reinforced with zirconia particles, Materials Chemistry and Physics 173 (2016) 524-533. https://doi.org/10.1016/j.matchemphys.2016.02.050

Z. Zhang, B. Li, S. Chen, Z. Yuan, C. Xu, W. Zhang, Influences of Al particles and current density on structural, mechanical and anti-corrosion properties of electrodeposited Ni–Co/Al composite coatings, Ceramics International 50(7) (2024) 11804-11816. https://doi.org/10.1016/j.ceramint.2024.01.085

F. Walsh, C. Ponce de Leon, A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology, Transactions of the IMF 92(5) (2014) 83-98. https://doi.org/10.1179/0020296713Z.000000000161

T. J. Tuaweri, G. D. Wilcox, Influence of SiO2 particles on zinc–nickel electrodeposition, Transactions of the IMF 85(5) (2007) 245-253. https://doi.org/10.1179/174591907X229608

L. Exbrayat, J. Creus, Synthesis of Zn-Ceria Nanocomposite Coatings from Particle-Free Aqueous Bath in a one Electrodeposition Step Process, Colloid and Interface Science Communications 25 (2018) 31-35. https://doi.org/https://doi.org/10.1016/j.colcom.2018.06.004

Y. Hamlaoui, F. Pedraza, C. Remazeilles, S. Cohendoz, C. Rébéré, L. Tifouti, J. Creus, Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions: Part I. Electrochemical and analytical characterisation, Materials Chemistry and Physics 113(2) (2009) 650-657. https://doi.org/https://doi.org/10.1016/j.matchemphys.2008.08.027

L. Martínez, E. Román, J. L. de Segovia, S. Poupard, J. Creus, F. Pedraza, Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc, Applied Surface Science 257(14) (2011) 6202-6207. https://doi.org/https://doi.org/10.1016/j.apsusc.2011.02.033

A. M. Simões, J. Torres, R. Picciochi, J. C. S. Fernandes, Corrosion inhibition at galvanized steel cut edges by phosphate pigments, Electrochimica Acta 54(15) (2009) 3857-3865. https://doi.org/10.1016/j.electacta.2009.01.065

T. V. Plakhova, A. Y. Romanchuk, S. N. Yakunin, T. Dumas, S. Demir, S. Wang, S. G. Minasian, D. K. Shuh, T. Tyliszczak, A. A. Shiryaev, A. V. Egorov, V. K. Ivanov, S. N. Kalmykov, Solubility of Nanocrystalline Cerium Dioxide: Experimental Data and Thermodynamic Modeling, The Journal of Physical Chemistry C 120(39) (2016) 22615-22626. https://doi.org/10.1021/acs.jpcc.6b05650

C. E. Castano, M. J. O’Keefe, W. G. Fahrenholtz, Cerium-based oxide coatings, Current Opinion in Solid State and Materials Science 19(2) (2015) 69-76. https://doi.org/10.1016/j.cossms.2014.11.005

B. Bouchaud, J. Balmain, G. Bonnet, F. Pedraza, pH-distribution of cerium species in aqueous systems, Journal of Rare Earths 30(6) (2012) 559-562. https://doi.org/10.1016/S1002-0721(12)60091-X

S. A. Hayes, P. Yu, T. J. O'Keefe, M. J. O'Keefe, J. O. Stoffer, The Phase Stability of Cerium Species in Aqueous Systems : I. E-pH Diagram for the System Ce-HClO4-H2O system, Journal of The Electrochemical Society 149(12) (2002) C623-C630. https://doi.org/10.1149/1.1516775

Published

26-10-2024

How to Cite

Mitrović, M., Simović, A., Fuchs-Godec, R., Тоmić M., & Bajat, J. (2024). Self-healing efficiency of ceria-doped Zn-Co coatings: Insights into particle-free versus biphasic plating baths: Original scientific paper. Journal of Electrochemical Science and Engineering, 2522. https://doi.org/10.5599/jese.2522

Issue

Section

RSE SEE 9 Special Issue