ZnO-modified carbon paste electrode for electrochemical sensing of dopamine in the presence of tyrosine
Original scientific article
DOI:
https://doi.org/10.5599/admet.3010Keywords:
ZnO nanoparticles, voltammetry, Alzheimer's disease, Parkinson's disease, chronoamperometryAbstract
Background and purpose: Dopamine, 3,4-dihydroxyphenylalanine, functions as a catecholamine neurotransmitter in the brain, sending messages to other neurons to regulate information transmission to other areas of the brain, govern movement, and alter brain activity. Tyrosine undergoes an enzymatic process in the pharmaceutical industry to produce dopamine. Thus, it is crucial to measure both tyrosine and dopamine in bodily fluids simultaneously. Experimental approach: In this work, we demonstrate the production of ZnO nanoparticles using a straightforward solvothermal technique. A straightforward, quick, and sensitive electrochemical sensing platform for dopamine detection was then created using the produced ZnO nanoparticles. Key results: Cyclic voltammetry comparison revealed that the ZnO/carbon paste electrode considerably enhanced the dopamine oxidation process compared to the unmodified carbon paste electrode (CPE). With a low detection limit of 0.003 μM, the ZnO/CPE sensor's linear response for voltammetric dopamine determination was found to be between 0.01 and 480.0 μM. Conclusion: The modified CPE effectively demonstrates its great accuracy in tyrosine-induced dopamine detection.
Downloads
References
[1] Z. Xu, X. Chu, H. Jiang, H. Schilling, S. Chen, J. Feng. Induced dopaminergic neurons: A new promise for Parkinson’s disease. Redox Biology 11 (2017) 606-612. https://doi.org/10.1016/j.redox.2017.01.009 DOI: https://doi.org/10.1016/j.redox.2017.01.009
[2] D.S. Cukierman, A.B. Pinheiro, S.L. Castiñeiras-Filho, A.S.P. Da Silva, M.M.C. De Falco, J. Landeira-Fernandez. A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson's disease: Therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. Journal of Inorganic Biochemistry 170 (2017) 160-168. https://doi.org/10.1016/j.jinorgbio.2017.02.020 DOI: https://doi.org/10.1016/j.jinorgbio.2017.02.020
[3] H. Nishijima, T. Ueno, T. Kon, R. Haga, Y. Funamizu, A. Arai, M. Tomiyama. Effects of duloxetine on motor and mood symptoms in Parkinson's disease: An open-label clinical experience. Journal of Neurological Sciences 375 (2017) 186-189. https://doi.org/10.1016/j.jns.2017.01.066 DOI: https://doi.org/10.1016/j.jns.2017.01.066
[4] N.B. Ashoka, B.K. Swamy, H. Jayadevappa. Electrochemical studies of dopamine in presence of uric acid and hydroquinone at TiO2 nanoparticles: a voltammetric study. Ionics 24 (2018) 1803-1811. https://doi.org/10.1007/s11581-017-2347-8 DOI: https://doi.org/10.1007/s11581-017-2347-8
[5] D. Zhang, L. Li, W. Ma, X. Chen, Y. Zhang. Electrodeposited reduced graphene oxide incorporating polymerization of L-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Materials Science and Engineering: C 70 (2017) 241-249. https://doi.org/10.1016/j.msec.2016.08.078 DOI: https://doi.org/10.1016/j.msec.2016.08.078
[6] T. Thomas, R.J. Mascarenhas, C. Nethravathi, M. Rajamathi, B.K. Swamy. Graphite oxide bulk modified carbon paste electrode for the selective detection of dopamine: A voltammetric study. Journal of Electroanalytical Chemistry 659 (2011) 113-119. https://doi.org/10.1016/j.jelechem.2011.05.011 DOI: https://doi.org/10.1016/j.jelechem.2011.05.011
[7] A.M. Fathalla, A.M. Soliman, A.A. Moustafa. Selective A2A receptors blockade reduces degeneration of substantia nigra dopamine neurons in a rotenone-induced rat model of Parkinson’s disease: A histological study. Neuroscience Letters 643 (2017) 89-96. https://doi.org/10.1016/j.neulet.2017.02.036 DOI: https://doi.org/10.1016/j.neulet.2017.02.036
[8] D.F. Davidson, K. Grosset, D. Grosset. Parkinson's disease: the effect of L-dopa therapy on urinary free catecholamines and metabolites. Annals of Clinical Biochemistry 44 (2007) 364-368. https://doi.org/10.1258/000456307780945705 DOI: https://doi.org/10.1258/000456307780945705
[9] O. Hornykiewicz. Biochemical aspects of Parkinson's disease. Neurology 51 (1998) S2-S9. https://doi.org/10.1212/WNL.51.2_Suppl_2.S2 DOI: https://doi.org/10.1212/WNL.51.2_Suppl_2.S2
[10] G. Beck, C. Hanusch, P. Brinkkoetter, N. Rafat, J. Schulte, K. Van Ackern, B. Yard. Effects of dopamine on cellular and humoral immune responses in septic patients. Der Anaesthesist 54 (2005) 1012-1020. https://doi.org/10.1007/s00101-005-0887-1 (In German) DOI: https://doi.org/10.1007/s00101-005-0887-1
[11] M. Kumar, B.K. Swamy, M.M. Asif, C.C. Viswanath. Preparation of alanine and tyrosine functionalized graphene oxide nanoflakes and their modified carbon paste electrodes for the determination of dopamine. Applied Surface Science 399 (2017) 411-419. https://doi.org/10.1016/j.apsusc.2016.11.185 DOI: https://doi.org/10.1016/j.apsusc.2016.11.185
[12] N.R. Gibson, F. Jahoor, L. Ware, A.A. Jackson. Endogenous glycine and tyrosine production is maintained in adults consuming a marginal-protein diet. American Journal of Clinical Nutrition 75 (2002) 511-518. https://doi.org/10.1093/ajcn/75.3.511 DOI: https://doi.org/10.1093/ajcn/75.3.511
[13] M.M. Rahman, N.S. Lopa, K. Kim, J.J. Lee. Selective detection of L-tyrosine in the presence of ascorbic acid, dopamine, and uric acid at poly(thionine)-modified glassy carbon electrode. Journal of Electroanalytical Chemistry 754 (2015) 87-93. https://doi.org/10.1016/j.jelechem.2015.06.018 DOI: https://doi.org/10.1016/j.jelechem.2015.06.018
[14] S. Chitravathi, B.K. Swamy, G.P. Mamatha, B.N. Chandrashekar. Electrocatalytic oxidation of tyrosine at poly(threonine)-film modified carbon paste electrode and its voltammetric determination in real sam¬ples. Journal of Molecular Liquids 172 (2012) 130-135. https://doi.org/10.1016/j.molliq.2012.03.022 DOI: https://doi.org/10.1016/j.molliq.2012.03.022
[15] X. Liu, L. Luo, Y. Ding, Z. Kang, D. Ye. Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry 86 (2012) 38-45. https://doi.org/10.1016/j.bioelechem.2012.01.008 DOI: https://doi.org/10.1016/j.bioelechem.2012.01.008
[16] I. Da Cruz Vieira, O. Fatibello-Filho. Spectrophotometric determination of methyldopa and dopamine in pharmaceutical formulations using a crude extract of sweet potato root (Ipomoea batatas (L.) Lam.) as enzymatic source. Talanta 46 (1998) 559-564. https://doi.org/10.1016/S0039-9140(97)00317-2 DOI: https://doi.org/10.1016/S0039-9140(97)00317-2
[17] B.A. Patel, M. Arundell, K.H. Parker, M.S. Yeoman, D.O. Hare. Simple and rapid determination of serotonin and catecholamines in biological tissue using high-performance liquid chromatography with electrochemical detection. Journal of Chromatography B 818 (2005) 269-276. https://doi.org/10.1016/j.jchromb.2005.01.008 DOI: https://doi.org/10.1016/j.jchromb.2005.01.008
[18] L. Götze, A. Hegele, S.K. Metzelder, H. Renz, W.A. Nockher. Development and clinical application of a LC-MS/MS method for simultaneous determination of various tyrosine kinase inhibitors in human plasma. Clinical Chimica Acta 413 (2012) 143-149. https://doi.org/10.1016/j.cca.2011.09.012 DOI: https://doi.org/10.1016/j.cca.2011.09.012
[19] S. Letellier, J.P. Garnier, J. Spy, B. Bousquet. Determination of the L-dopa/L-tyrosine ratio in human plasma by high-performance liquid chromatography: usefulness as a marker in metastatic malignant melanoma. Journal of Chromatography B 696 (1997) 9-17. https://doi.org/10.1016/S0378-4347(97)00206-5 DOI: https://doi.org/10.1016/S0378-4347(97)00206-5
[20] L. Zhang, N. Teshima, T. Hasebe, M. Kurihara, T. Kawashima. Flow-injection determination of trace amounts of dopamine by chemiluminescence detection. Talanta 50 (1999) 677-683. https://doi.org/10.1016/S0039-9140(99)00164-2 DOI: https://doi.org/10.1016/S0039-9140(99)00164-2
[21] E. Nagles, L. Ibarra, J.P. Llanos, J. Hurtado, O. Garcia-Beltrán. Development of a novel electrochemical sensor based on cobalt (II) complex useful in the detection of dopamine in presence of ascorbic acid and uric acid. Journal of Electroanalytical Chemistry 788 (2017) 38-43. https://doi.org/10.1016/j.jelechem.2017.01.057 DOI: https://doi.org/10.1016/j.jelechem.2017.01.057
[22] F. Zhou, H. Zhao, Z. Shi, J. Hou, M. Lan. The first principle calculation of heterojunction based on CuO-CeO2 and its application in electrochemical detection of dopamine and tyrosine. Chemical Engineering Journal 167701 (2025) 167701. https://doi.org/10.1016/j.cej.2025.167701 DOI: https://doi.org/10.1016/j.cej.2025.167701
[23] V. Mariyappan, T. Jeyapragasam, S.M. Chen, K. Murugan. Mo-WO nanowire intercalated graphene aerogel nanocomposite for the simultaneous determination of dopamine and tyrosine in human urine and blood serum sample. Journal of Electroanalytical Chemistry 895 (2021) 115391. https://doi.org/10.1016/j.jelechem.2021.115391 DOI: https://doi.org/10.1016/j.jelechem.2021.115391
[24] J. Wang, X. Qiang, B. Jia, L. Wang, J. Li, H. Che, X. Wu. Redox-assisted construction of Nano-Ag driven MXene-based flexible electrode for excellent cycling stability. Journal of Power Sources 656 (2025) 238063. https://doi.org/10.1016/j.jpowsour.2025.238063 DOI: https://doi.org/10.1016/j.jpowsour.2025.238063
[25] O. Buriez, E. Labbé. Disclosing the redox metabolism of drugs: the essential role of electrochemistry. Current Opinion in Electrochemistry 24 (2020) 63-68. https://doi.org/10.1016/j.coelec.2020.07.002 DOI: https://doi.org/10.1016/j.coelec.2020.07.002
[26] R. Jungnickel, K. Balasubramanian. Electrochemistry-coupled surface plasmon resonance on 2D materials for analysis at solid-liquid interfaces. Current Opinion in Electrochemistry 101634 (2024) 101634. https://doi.org/10.1016/j.coelec.2024.101634 DOI: https://doi.org/10.1016/j.coelec.2024.101634
[27] N.R. Nadar, J. Deepak, S. Sahu, S.C. Sharma, B.R. Krushna, I.S. Pruthviraj, R.R. Kumar. Electrochemical Dopamine Sensing Using Mn-Doped CeO2 Nanomaterial-Modified Carbon Paste Electrode for Biomedical Applications. Journal of the Indian Chemical Society 102(11) (2025) 102096. https://doi.org/10.1016/j.jics.2025.102096 DOI: https://doi.org/10.1016/j.jics.2025.102096
[28] R.T. Massah, A. Tall, B. Kaboré, Y. Karanga, W. Ibrango, L.M.B. à Moungam, I.K. Tonle. Sensitive electro¬chemical determination of sunset yellow in soft drinks using geopolymer-modified carbon paste electrode. Electrochimica Acta 541 (2025) 147321. https://doi.org/10.1016/j.electacta.2025.147321 DOI: https://doi.org/10.1016/j.electacta.2025.147321
[29] N. Ziaie, S.M. Ghoreishi. Novel electrochemical detection of diltiazem in the presence of amlodipine and acetaminophen using a NiZn MOF/rGO modified carbon paste electrode. Microchemical Journal 218 (2025) 114994. https://doi.org/10.1016/j.microc.2025.114994 DOI: https://doi.org/10.1016/j.microc.2025.114994
[30] Z.W. Pan, Z.R. Dai, Z.L. Wang. Science 291 (2001) 1947-1949. https://doi.org/10.1126/science.1058120 DOI: https://doi.org/10.1126/science.1058120
[31] V. Khranovskyy, I. Tsiaoussis, G.R. Yazdi, L. Hultman, R. Yakimova. Journal of Crystal Growth 312 (2010) 327-332. https://doi.org/10.1016/j.jcrysgro.2009.09.057 DOI: https://doi.org/10.1016/j.jcrysgro.2009.09.057
[32] M. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang. Advanced Materials 13 (2001) 113-116. https://doi.org/10.1002/1521-4095(200101)13:2%3C113::AID-ADMA113%3E3.0.CO;2-H DOI: https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
[33] S.J. Pearton, F. Ren, Y.L. Wang, B.H. Chu, K.H. Chen, C.Y. Chang, W. Lim, J. Lin, D.P. Norton. Progress in Materials Science 55 (2010) 1-59. https://doi.org/10.1016/j.pmatsci.2009.08.003 DOI: https://doi.org/10.1016/j.pmatsci.2009.08.003
[34] Z. Sarbandian, H. Beitollahi, An electrochemical sensor based on a modified glassy carbon electrode for detection of epinephrine in the presence of theophylline. ADMET and DMPK 12(2) (2024) 391-402. https://doi.org/10.5599/admet.2082. DOI: https://doi.org/10.5599/admet.2082
[35] S. Kumar, A. Kumar, V. Navakoteswara Rao, A. Kumar, M.V. Shankar, V. Krishnan. Defect-rich MoS2 ultrathin nanosheets-coated nitrogen-doped ZnO nanorod heterostructures: an insight into in-situ-generated ZnS for enhanced photocatalytic hydrogen evolution. ACS Applied Energy Materials 2 (2019) 5622-5634. https://doi.org/10.1021/acsaem.9b00790 DOI: https://doi.org/10.1021/acsaem.9b00790
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ali Obaid Imarah, Nada Hasan, Mustafa G. Alabbasi

This work is licensed under a Creative Commons Attribution 4.0 International License.



