Efficient electrochemical determination of dopamine in the presence of uric acid in real samples using tungsten disulfide nanostructure modified electrode

Original scientific article

Authors

DOI:

https://doi.org/10.5599/admet.2968

Keywords:

Central nervous system, cardiovascular system, nanostructured materials, chemically modified electrode

Abstract

Background and purpose: Research on the detection of uric acid (URA) and dopamine (DPA) is ongoing because of the difficulties posed by their closely overlapping oxidation potentials. Tungsten disulfide nanostructures have become attractive electrode materials to address this problem due to their low toxicity, low cost, easy production, and strong catalytic activity. Experimental approach: For voltammetric detection of compounds, we present the creation of an electrochemical sensor based on a glassy carbon electrode modified with tungsten disulfide nanostructures. Key results: According to electrochemical analyses, the manufactured sensor performed exceptionally well, having a broad LDR of 0.03 to 600.0 μM and a low LOD of 10 nM for DPA. Conclusion: The effective detection of compounds in real samples, such as injections and urine, with acceptable recovery rates further confirmed the suggested sensor's practical usefulness. In addition to offering a viable method for creating tungsten disulfide-based modified electrodes, this study holds promise for future applications in bioanalytical sensing and clinical diagnostics.

Downloads

Download data is not yet available.

References

[1] W. Zhang, L. Liu, Y. Li, D. Wang, H. Ma, H. Ren, B.C. Ye. Electrochemical sensing platform based on the biomass-derived microporous carbons for simultaneous determination of ascorbic acid, dopamine, and uric acid. Biosensors and Bioelectronics 121 (2018) 96-103. https://doi.org/10.1016/j.bios.2018.08.043 DOI: https://doi.org/10.1016/j.bios.2018.08.043

[2] P.M. Moran, K.T. Granger. IUPHAR review: Moving beyond dopamine-based therapeutic strategies for schizophrenia. Pharmacological Research 216 (2025) 107727. https://doi.org/10.1016/j.phrs.2025.107727 DOI: https://doi.org/10.1016/j.phrs.2025.107727

[3] J.F. Martín-Rodríguez, E. Iglesias-Camacho, F.J. Gómez-Campos, P. Franco-Rosado, L. Garrote-Espina, L. Muñoz-Delgado, P. Mir. EEG changes induced by dopamine replacement therapy in Parkinson’s disease with impulse control disorders. Clinical Neurophysiology 178 (2025) 2110958. https://doi.org/10.1016/j.clinph.2025.2110958 DOI: https://doi.org/10.1016/j.clinph.2025.2110958

[4] H. Chern, G. Caruso, H. Desaire, R. Jarosova. Carnosine mitigates cognitive impairment and dopamine release in an okadaic acid-Induced zebrafish model with Alzheimer’s disease-like symptoms. ACS Chemical Neuroscience 16(5) (2025) 790-801. https://doi.org/10.1021/acschemneuro.4c00596 DOI: https://doi.org/10.1021/acschemneuro.4c00596

[5] A.W. Williams-Larson. Urinary calculi associated with purine metabolism: uric acid nephrolithiasis. Endocrinology and Metabolism Clinics of North America 19(4) (1990) 821-838. https://doi.org/10.1016/S0889-8529(18)30295-0 DOI: https://doi.org/10.1016/S0889-8529(18)30295-0

[6] Y. Shao, H. Shao, M.S. Sawhney, L. Shi. Serum uric acid as a risk factor of all-cause mortality and cardiovascular events among type 2 diabetes population: meta-analysis of correlational evidence. Journal of Diabetes and its Complications 33(10) (2019) 107409. https://doi.org/10.1016/j.jdiacomp.2019.07.006 DOI: https://doi.org/10.1016/j.jdiacomp.2019.07.006

[7] Y. Li, J. Li, Y.Y. Li, L. Tu, Y.Y. Yuan, W.X. Wang. Design and synthesis of molecules binding to uric acid guided by non-covalent interaction analyses for the treatment of hyperuricemia and gout. Journal of Molecular Structure 1337 (2025) 142205. https://doi.org/10.1016/j.molstruc.2025.142205 DOI: https://doi.org/10.1016/j.molstruc.2025.142205

[8] M. Patel, A. Jaiswal, A. Naseer, A. Tripathi, A. Joshi, T. Minocha, N. Gour. Amyloidogenic propensity of metabolites in the uric acid pathway and urea cycle critically impacts the etiology of metabolic disorders. ACS Chemical Neuroscience 15(5) (2024) 916-931. https://doi.org/10.1021/acschemneuro.3c00563 DOI: https://doi.org/10.1021/acschemneuro.3c00563

[9] Z. Kochan, K. Mironiuk, A. Mickiewicz, A. Janczy, R.T. Smolenski, M. Gruchala, J. Karbowska. MON-PO473: N-3 PUFA-Enriched Semi-Vegetarian Diet Lowers LDL-Cholesterol and Uric Acid Levels in Patients with Familial Hypercholesterolemia. Clinical Nutrition 38 (2019) S233. https://doi.org/10.1016/S0261-5614(19)32306-4 DOI: https://doi.org/10.1016/S0261-5614(19)32306-4

[10] J. Hwang, J.H. Hwang, Y. Eun, H. Kim, J. Lee, J.K. Ahn. OP0194 The association between serum uric acid and arterial stiffness in a low-risk, large population of middle-aged Korean. Annals of the Rheumatic Diseases 77 (2018) 146. https://doi.org/10.1136/annrheumdis-2018-eular.1848 DOI: https://doi.org/10.1136/annrheumdis-2018-eular.1848

[11] X. Wang, L. Wang, M. Wu, Y. Zheng, R. Wang, T. Shao, Q. Yue. Portable and intelligent ratio fluorometry and colorimetry for dual-mode detection of dopamine based on B,N-codoped carbon dots and machine learning. Talanta 294 (2025) 128288. https://doi.org/10.1016/j.talanta.2025.128288 DOI: https://doi.org/10.1016/j.talanta.2025.128288

[12] X. Zhang, Z., He, S. Wang, S. Zhang, D. Song. A pure near-infrared platform with dual-readout capability employing upconversion fluorescence and colorimetry for biosensing of uric acid. Talanta 291 (2025) 127900. https://doi.org/10.1016/j.talanta.2025.127900 DOI: https://doi.org/10.1016/j.talanta.2025.127900

[13] T. Lian, R. Peng, Z. Xiao, X. Tang, P. Xu, Y. Hu, P. Qiu. MOF-on-MOF nanomaterial (Fe-MOF@ UiO-66)-based ratiometric fluorescence/colorimetric dual-mode sensor for ultrasensitive detection of uric acid. Analytica Chimica Acta 1368 (2025) 344325. https://doi.org/10.1016/j.aca.2025.344325 DOI: https://doi.org/10.1016/j.aca.2025.344325

[14] N. Safwat, A.M. Mahmoud, M.F. Ayad, M.F. Abdel-Ghany, M.M. Gomaa, H.Z. Yamani. Ultrasensitive and rapid dopamine sensing via turn-on fluorescence of a dual-ligand Tb-MOF: Towards Point-of-care neurochemical monitoring. Talanta 297 (2025) 128683. https://doi.org/10.1016/j.talanta.2025.128683 DOI: https://doi.org/10.1016/j.talanta.2025.128683

[15] V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb. A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. Journal of Chromatography B 847(2) (2007) 88-94. https://doi.org/10.1016/j.jchromb.2006.09.032 DOI: https://doi.org/10.1016/j.jchromb.2006.09.032

[16] D. Remane, S. Grunwald, H. Hoeke, A. Mueller, S. Roeder, M. von Bergen, D.K. Wissenbach. Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine. Journal of Chromatography B 998 (2015) 40-44. https://doi.org/10.1016/j.jchromb.2015.06.021 DOI: https://doi.org/10.1016/j.jchromb.2015.06.021

[17] E. Kipkorir, O. Kimani. Electrochemical sensing of pharmaceutical pollutants using modified glassy carbon electrodes with nanostructures. Inorganic Chemistry Communications 179 (2025) 114827. https://doi.org/10.1016/j.inoche.2025.114827 DOI: https://doi.org/10.1016/j.inoche.2025.114827

[18] S. Jampasa, W. Khamcharoen, S. Traipop, W. Jesadabundit, T. Ozer, O. Chailapakul. Recent advances on nanomaterial-modified film-electrode-based sensors: Approach to clinical purpose. Current Opinion in Electrochemistry 42 (2023) 101420. https://doi.org/10.1016/j.coelec.2023.101420 DOI: https://doi.org/10.1016/j.coelec.2023.101420

[19] S. Chanarsa, N. Semakul, J. Jakmunee, P. Iamprasertkun, P.H. Aubert, K. Ounnunkad. A strategy of forming sandwich electrodes based on graphene and two-dimensional transition metal dichalcogenides as supercapacitors to avoid gas evolution. Journal of Energy Storage 98 (2024) 113083. https://doi.org/10.1016/j.est.2024.113083 DOI: https://doi.org/10.1016/j.est.2024.113083

[20] Y.G. Yoo, S. Park, S. Bae, J. Park, I. Nam, J. Yi. Transition metal-free graphene framework based on disulfide bridges as a Li host material. Energy Storage Materials 14 (2018) 238-245. https://doi.org/10.1016/j.ensm.2018.04.007 DOI: https://doi.org/10.1016/j.ensm.2018.04.007

[21] M. Khairy, S. Eid, H. Nady. Facile synthesis of NiCo₂S₄-modified WS₂ nanosheets for highly efficient hydrogen production. Inorganic Chemistry Communications 181 (2025) 115126. https://doi.org/10.1016/j.inoche.2025.115126 DOI: https://doi.org/10.1016/j.inoche.2025.115126

[22] M. Jiang, C. Yin, J. Du, W. Fu, X. Han, W. Sun. Gold nanorods and tungsten disulfide nanocomposite modified electrode for hemoglobin electrochemical biosensing of trichloroacetic acid and nitrite. International Journal of Electrochemical Science 18(12) (2023) 100371. https://doi.org/10.1016/j.ijoes.2023.100371 DOI: https://doi.org/10.1016/j.ijoes.2023.100371

[23] M.B. Poudel, G.P. Ojha, H.J. Kim. Manganese-doped tungsten disulfide microcones as binder-free electrode for high performance asymmetric supercapacitor. Journal of Energy Storage 47 (2022) 103674. https://doi.org/10.1016/j.est.2021.103674 DOI: https://doi.org/10.1016/j.est.2021.103674

[24] X. Zeng, Z. Ding, C. Ma, L. Wu, J. Liu, L. Chen, W. Wei. Hierarchical nanocomposite of hollow N-doped carbon spheres decorated with ultrathin WS2 nanosheets for high-performance lithium-ion battery anode. ACS Applied Materials & Interfaces 8(29) (2016) 18841-18848. https://doi.org/10.1021/acsami.6b04770 DOI: https://doi.org/10.1021/acsami.6b04770

[25] X. Zhang, J. Wang, H. Xu, H. Tan, X. Ye. Preparation and tribological properties of WS2 hexagonal nanoplates and nanoflowers. Nanomaterials 9(6) (2019) 840. https://doi.org/10.3390/nano9060840 DOI: https://doi.org/10.3390/nano9060840

[26] B.G. Santos, J.M. Gonçalves, D.P. Rocha, G.S. Higino, T.P. Yadav, J.J. Pedrotti, L. Angnes. Electrochemical sensor for isoniazid detection by using a WS2/CNTs nanocomposite. Sensors and Actuators Reports 4 (2022) 100073. https://doi.org/10.1016/j.snr.2021.100073 DOI: https://doi.org/10.1016/j.snr.2021.100073

[27] L. Zhou, S. Yan, Z. Lin, Y. Shi. In situ reduction of WS2 nanosheets for WS2/reduced graphene oxide composite with superior Li-ion storage. Materials Chemistry and Physics 171 (2016) 16-21. https://doi.org/10.1016/j.matchemphys.2015.12.061 DOI: https://doi.org/10.1016/j.matchemphys.2015.12.061

Downloads

Published

09-10-2025

Issue

Section

SI: Electrochemistry in Drug Discovery and Development

How to Cite

Efficient electrochemical determination of dopamine in the presence of uric acid in real samples using tungsten disulfide nanostructure modified electrode: Original scientific article. (2025). ADMET and DMPK, 2968. https://doi.org/10.5599/admet.2968

Similar Articles

1-10 of 181

You may also start an advanced similarity search for this article.