An electrochemical sensing platform based on a modified carbon paste electrode with graphene/Co3O4 nanocomposite for sensitive propranolol determination

Authors

  • Parisa Karami-Kolmoti Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
  • Reza Zaeimbashi Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

DOI:

https://doi.org/10.5599/admet.1705

Keywords:

Carbon paste electrodes, graphene/Co3O4 nanocomposite, differential pulse voltammetry, propranolol
modified carbon paste electrode with graphene/Co3O4 nanoparticles

Abstract

A simple and sensitive method for the determination of propranolol using a modified carbon paste electrode with graphene/Co3O4 nanocomposite was presented. The electrochemical measurements of propranolol are studied using differential pulse voltammetry, cyclic voltammetry and chronoamperometry. The gra­phene/Co3O4 nanocomposite exhibits excellent catalytic activity towards the electrochemical oxidation of propranolol in phosphate buffer solution of pH 7.0. The graphene/Co3O4 nanocomposite facilitates the determination of propranolol in the concentration range 1.0–300.0 μM and a detection limit and sensitivity of 0.3 μM. and 0.1275 μA/μM were achieved.

Downloads

Download data is not yet available.

References

P. Gupta, S.K. Yadav, B. Agrawal, R.N. Goyal. A novel graphene and conductive polymer modified pyrolytic graphite sensor for determination of propranolol in biological fluids. Sensors and Actuators B: Chemical 204 (2014) 791-798. https://doi.org/10.1016/j.snb.2014.08.040

A. Santhy, S. Beena. A study on the recent developments in voltammetric sensors for the β-blocker propranolol hydrochloride. Biomedical Engineering Applications for People with Disabilities and the Elderly in the COVID-19 Pandemic and Beyond, (2022) 23-31. https://doi.org/10.1016/B978-0-323-85174-9.00004-2

H. B. Ladmakhi, S. Fathi, F. Chekin, J.B. Raoof. Determination of Propranolol at a Carbon Paste Electrode Modified with Magnetite–Graphene Oxide in Combination with Presence of Sodium Dodecyl Sulfate. Russian Journal of Electrochemistry 58(3) (2022) 184-191. https://doi.org/10.1134/S102319352203¬0065

M. Yaqub, S. Park, E. Alzahrani, A.E. Farouk, W. Lee. Application of data-driven machine learning to predict propranolol and trimethoprim removal using a managed aquifer recharge system. Journal of Environmental Chemical Engineering 10(1) (2022) 106847. https://doi.org/10.1016/j.jece.2021.-106847

M. Khalid, S. Ahmad. Box–Behnken Design Used to Optimize the Simultaneous Quantification of Amitriptyline and Propranolol in Tablet Dosages by RP-HPLC-DAD Method and Their Stability Tests. Separations 9(12) (2022) 421. https://doi.org/10.3390/separations9120421

N.S. Alsultani, A.A. Alkarimi, I.A. Aljazaery. Preparation of Monolithic Chromatographic Column for Propranolol Hydrochloride Determination. Journal of Pharmaceutical Negative Results 13(4) (2022) 1629-1636. https://doi.org/10.47750/pnr.2022.13.04.226

S. Lee, S. Jung. 13C NMR spectroscopic analysis on the chiral discrimination of N-acetylphenylalanine, catechin and propranolol induced by cyclic-(1→ 2)-β-d-glucans (cyclosophoraoses). Carbohydrate research 337(19) (2002) 1785-1789. https://doi.org/10.1016/S0008-6215(02)00286-0

A.M. Santos, A. Wong, O. Fatibello-Filho. Simultaneous determination of salbutamol and propranolol in biological fluid samples using an electrochemical sensor based on functionalized-graphene, ionic liquid and silver nanoparticles. Journal of Electroanalytical Chemistry 824 (2018) 1-8. https://doi.org/10.1016/j.jelechem.2018.07.018

M. Khairy, A.A. Khorshed. Simultaneous voltammetric determination of two binary mixtures containing propranolol in pharmaceutical tablets and urine samples. Microchemical Journal 159 (2020) 105484. https://doi.org/10.1016/j.microc.2020.105484

H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Scientific Reports 10(1) (2020) 1-13. https://doi.org/10.1038/s41598-020-68663-2

A. Lohrasbi Nejad. Electrochemical strategies for detection of diazinon. Journal of Electrochemical Science and Engineering 12(6) (2022) 1041-1059. https://doi.org/10.5599/jese.1379

H. Beitollahi, S.Z. Mohammadi, M. Safaei, S. Tajik. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: a review. Analytical Methods 12 (2020) 1547-1560. https://doi.org/10.1039/C9AY02598G

J. Mohanraj, D. Durgalakshmi, R.A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. Journal of Colloid and Interface Science 566 (2020) 463-472. https://doi.org/-10.1016/j.jcis.2020.01.089

Y.F. Mustafa, G. Chehardoli, S. Habibzadeh, Z. Arzehgar. Electrochemical detection of sulfite in food samples. Journal of Electrochemical Science and Engineering 12(6) (2022) 1061-1079. https://doi.org/10.5599/jese.1555

M. Mazloum-Ardakani, H. Beitollahi, B. Ganjipour, H. Naeimi. Novel carbon nanotube paste electrode for simultaneous determination of norepinephrine, uric acid and d-penicillamine. International Journal of Electrochemical Science 5 (2010) 531-546.

M. Miraki, H. Karimi-Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K. Gupta. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. Journal of Molecular Liquids 278 (2019) 672-676. https://doi.org/10.1016/j.molliq.-2019.01.081

M. Velicky, A. N. Rodgers, R.A. Dryfe, K. Tam. Use of voltammetry for in vitro equilibrium and transport studies of ionisable drugs. ADMET and DMPK 2(3) (2014) 143-156. https://doi.org/10.5599/admet.¬2.3.22

S. Azimi, M. Amiri, H. Imanzadeh, A. Bezaatpour. Fe3O4@SiO2-NH2/CoSB Modified Carbon Paste Electrode for Simultaneous Detection of Acetaminophen and Chlorpheniramine. Advanced Journal of Chemistry-Section A 4(2) (2021) 152-164. https://doi.org/10.22034/ajca.2021.275901.1246

S. Mahari, S. Gandhi. Electrochemical immunosensor for detection of avian Salmonellosis based on electroactive reduced graphene oxide (rGO) modified electrode. Bioelectrochemistry 144 (2022) 108036. https://doi.org/10.1016/j.bioelechem.2021.108036

H. Karimi-Maleh, C. Karaman, O. Karaman, F. Karimi, Y. Vasseghian, L. Fu, M. Baghayeri, J. Rouhi, P. Senthil Kumar, P.L. Show, S. Rajendran. Nanochemistry approach for the fabrication of Fe and N co-decorated biomass-derived activated carbon frameworks: a promising oxygen reduction reaction electrocatalyst in neutral media. Journal of Nanostructure in Chemistry 12(3) (2022) 429-439. https://doi.org/10.1007/s40097-022-00492-3

S. Tajik, M.A. Taher, H. Beitollahi. Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode. Sensors and Actuators B: Chemical 188 (2013) 923-930. https://doi.org/10.1016/j.snb.2013.07.085

A. Hosseini Fakhrabad; R. Sanavi Khoshnood; M.R. Abedi; M. Ebrahimi. Fabrication a composite carbon paste electrodes (CPEs) modified with multi-wall carbon nano-tubes (MWCNTs/N, N-Bis (salicyliden)-1,3-propandiamine) for determination of lanthanum (III). Eurasian Chemical Communications 3(9) (2021) 627-634. http://dx.doi.org/10.22034/ecc.2021.288271.1182

M. Yang, Z. Sun, H. Jin, R. Gui. Sulfur nanoparticle-encapsulated MOF and boron nanosheet-ferrocene complex modified electrode platform for ratiometric electrochemical sensing of adriamycin and real-time monitoring of drug release. Microchemical Journal 177 (2022) 107319. https://doi.org/10.1016/j.microc.2022.107319

M. Farahmandjou, P. Khalili. ZnO nanoparticles synthesized by co-precipitation method; Morphology and optoelectronic study. Asian Journal of Green Chemistry 5(2) (2021) 219-226. https://doi.org/¬10.22034/ajgc.2021.261206.1287

H. Beitollahi, S.G. Ivari, M. Torkzadeh-Mahani. Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO-CuO nanoplates and modifier. Materials Science and Engineering: C 69 (2016) 128-133. https://doi.org/10.1016/j.msec.2016.06.064

P.S. Kumar, B.S. Sreeja, K.K. Kumar, G. Padmalaya. Static and dynamic analysis of sulfamethoxazole using GO/ZnO modified glassy carbon electrode by differential pulse voltammetry and amperometry techniques. Chemosphere 302 (2022) 134926. https://doi.org/10.1016/j.chemosphere.2022.134926

S.A. Ismaeel; Y.K. Al-Bayati. Determination of trace metformin in pharmaceutical preparation using molecularly imprinted polymer based pvc-membrane. Eurasian Chemical Communications 3(11) (2021) 812-830. http://dx.doi.org/10.22034/ecc.2021.300477.1224

Y. Dessie, S. Tadesse. A Review on Advancements of Nanocomposites as Efficient Anode Modifier Catalyst for Microbial Fuel Cell Performance Improvement, Journal of Chemical Reviews 3(4) (2021) 320-344. http://dx.doi.org/10.22034/jcr.2021.314327.1128

E.C. Martins, E.R. Santana, A. Spinelli. Nitrogen and sulfur co-doped graphene quantum dot-modified electrode for monitoring of multivitamins in energy drinks. Talanta 252 (2023) 123836. https://doi.org/10.1016/j.talanta.2022.123836

M. Mazloum-Ardakani, H. Beitollahi, M.K. Amini, F. Mirkhalaf, B.F. Mirjalili, A. Akbari. Application of 2-(3, 4-dihydroxyphenyl)-1, 3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid. Analyst 136(9) (2011) 1965-1970.

F. Zare Kazemabadi, A. Heydarinasab, A. Akbarzadehkhiyavi, M. Ardjmand. Development, Optimization and in vitro Evaluation of Etoposide loaded Lipid Polymer Hybrid Nanoparticles for controlled Drug Delivery on Lung Cancer. Chemical Methodologies 5(2) (2021) 135-152. https://doi.org/10.22034/¬chemm.2021.121495

S. Wang, H. Wang, S. Liu, H. Guo, J. Meng, M. Chang, S. Wu. Highly sensitive detection of fluoride based on poly (3-aminophenylboronic acid)-reduced graphene oxide multilayer modified electrode. Food Chemistry 400 (2023) 134042. https://doi.org/10.1016/j.foodchem.2022.134042

R. Kavade, R. Khanapure, U. Gawali, A. Patil, S. Patil. Degradation of Methyl orange under visible light by ZnO-Polyaniline nanocomposites. Journal of Applied Organometallic Chemistry 2(2) (2022) 101-112. http://dx.doi.org/10.22034/jaoc.2022.349558.1056,

H. Shayegan, V. Safarifard, H. Taherkhani, M.A. Rezvani. Efficient removal of cobalt(II) ion from aqueous solution using amide-functionalized metal-organic framework. Journal of Applied Organometallic Chemistry 2(3) (2022) 109-118. DOI: http://dx.doi.org/10.22034/jaoc.2022.154718

H. Duan, D. Wang, Y. Li. Green chemistry for nanoparticle synthesis. Chemical Society Reviews 44(16) (2015) 5778-5792. https://doi.org/10.1039/C4CS00363B

M. Bijad, A. Hojjati-Najafabadi, H. Asari-Bami, S. Habibzadeh, I. Amini, F. Fazeli. An overview of modified sensors with focus on electrochemical sensing of sulfite in food samples. Eurasian Chemical Communications 3(2) (2021) 116-138. DOI: http://dx.doi.org/10.22034/ecc.2021.268819.1122

M.M. Abdul Hassan, S. Hassan, K.A. Hassan. Green and chemical synthesis of bimetallic nanoparticles (Fe/Ni) supported by zeolite 5A as a heterogeneous Fenton-like catalyst and study of kinetic and thermodynamic reaction for decolorization of reactive red 120 dye from aqueous pollution. Eurasian Chemical Communications 4 (2022) 1062-1086. https://doi.org/10.22034/ecc.2022.342067.1466

S. Ariavand, M. Ebrahimi, E. Foladi. Design and Construction of a Novel and an Efficient Potentiometric Sensor for Determination of Sodium Ion in Urban Water Samples. Chemical Methodologies 6 (2022) 886-904. https://doi.org/10.22034/chemm.2022.348712.1567

B. Paulchamy, G. Arthi, B.D. Lignesh. A simple approach to stepwise synthesis of graphene oxide nanomaterial. Journal of Nanomedicine & Nanotechnology 6(1) (2015) 1. https://doi.org/10.4172/-2157-7439.1000253

G. Nabi Bidhendi, N. Mehrdadi, M. Firouzbakhsh. Removal of lead from wastewater by iron–benzenetricarboxylate metal-organic frameworks. Chemical methodologies 5 (2021) 271-284. https://doi.org/10.22034/chemm.2021.130208

A. Dehno Khalaji, N. Mohammadi, M. Emami. NiO nanoparticles: Synthesis, characterization, and methyl green removal study. Progress in Chemical and Biochemical Research 4(4) (2021) 372-378. https://doi.org/10.22034/pcbr.2021.294420.1194

A. Obaid, S. Al-ghabban, R. Al-Hussain. Appraising Antioxidant and Antibacterial Activities of Zinc Oxide Nanoparticles Synthesized Biologically by Iraqi Propolis. Chemical Methodologies 6(5) (2022) 366-371. https://doi.org/10.22034/chemm.2022.332390.1448

M. Pirozmand, A. Nezhadali, M. Payehghadr, L. Saghatforoush. Ultratrace determination of cadmium ion in petro-chemical sample by a new modified carbon paste electrode as voltammetric sensor. Eurasian Chemical Communications 2 (2020) 1021-1032. https://doi.org/10.22034/ecc.2020.241560¬.1063

S.E. Mousavi Ghahfarokhi, K. Helfi, M. Zargar Shoushtari. Synthesis of the Single-Phase Bismuth Ferrite (BiFeO3) Nanoparticle and Investigation of Their Structural, Magnetic, Optical and Photocatalytic Properties. Advanced Journal of Chemistry-Section A 5(1) (2022) 45-58. https://doi.org/10.22034/¬ajca.2021.309069.1284

L. Qian, S. Durairaj, S. Prins, A. Chen. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosensors and Bioelectronics 175 (2021) 112836. https://doi.org/10.1016/j.bios.2020.112836

V. Tallapaneni, L. Mude, D. Pamu, V.V.S.R. Karri. Formulation, characterization and in vitro evaluation of dual-drug loaded biomimetic chitosan-collagen hybrid nanocomposite scaffolds. Journal of Medi¬cinal and Chemical Sciences 5 (2022) 1059-1074. https://doi.org/10.26655/JMCHEMSCI.¬2022.6.19

A. Kannan, S. Radhakrishnan. Fabrication of an electrochemical sensor based on gold nanoparticles functionalized polypyrrole nanotubes for the highly sensitive detection of l-dopa. Materials Today Communications 25 (2020) 101330. https://doi.org/10.1016/j.mtcomm.2020.101330

R.M. Mohabis, F. Fazeli, I. Amini, V. Azizkhani. An overview of recent advances in the detection of ascorbic acid by electrochemical techniques. Journal of Electrochemical Science and Engineering 12(6) (2022) 1081-1098. https://doi.org/10.5599/jese.1561

H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W. Maxakato, A. Abbaspourrad. A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. New Journal of Chemistry 43(5) (2019) 2362-2367. https://doi.org/10.1039/C8NJ05581E

A. Meoipun, K. Kaewjua, O. Chailapakul, W. Siangproh. A simple and fast flow injection amperometry for the determination of methimazole in pharmaceutical preparations using an unmodified boron-doped diamond electrode. ADMET and DMPK (2023). https://doi.org/10.5599/admet.1584

P.M. Jahani. Flower-like MoS2 screen-printed electrode based sensor for the sensitive detection of sunset yellow FCF in food samples. Journal of Electrochemical Science and Engineering 12(6) (2022) 1099-1109. https://doi.org/10.5599/jese.1413

S.A. Alavi-Tabari, M.A. Khalilzadeh, H. Karimi-Maleh. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. Journal of Electroanalytical Chemistry 811 (2018) 84-88. https://doi.org/10.1016/j.-jelechem.¬2018.01.034

C.M. Brett. Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors. Molecules 27(5) (2022) 1497. https://doi.org/10.3390/molecules27051497

S.Z. Mohammadi, F. Mousazadeh, M. Mohammadhasani-Pour. Electrochemical detection of folic acid using a modified screen printed electrode. Journal of Electrochemical Science and Engineering 12(6) (2022) 1111-1120. https://doi.org/10.5599/jese.1360

V. Sanko, A. Şenocak, S. O. Tümay, Y. Orooji, E. Demirbas, A. Khataee. An electrochemical sensor for detection of trace-level endocrine disruptor bisphenol A using Mo2Ti2AlC3 MAX phase/MWCNT composite modified electrode. Environmental Research 212 (2022) 113071. https://doi.org/-10.1016/j.envres.2022.113071

H. Karimi-Maleh, A.F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri, R. Moradi. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosensors and Bioelectronics 86 (2016) 879-884. https://doi.org/10.1016/j.¬bios.¬2016.07.086

S. Saghiri, M. Ebrahimi, M. Bozorgmehr. Electrochemical Amplified Sensor with Mgo Nanoparticle and Ionic Liquid: A Powerful Strategy for Methyldopa Analysis. Chemical Methodologies 5(3) (1999) 234-239. https://doi.org/10.22034/chemm.2021.128530

T. Eren, N. Atar, M. L. Yola, H. Karimi-Maleh. a sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food chemistry 185 (2015) 430-436. https://doi.org/10.1016/j.foodchem.2015.03.153

S. Saghiri, M. Ebrahimi, M.R. Bozorgmehr. NiO nanoparticle/1-hexyl-3-methylimidazolium hexaflu-orophosphate composite for amplification of epinephrine electrochemical sensor. Asian Journal of Nanosciences and Materials 4(1) (2021) 46-52. https://doi.org/10.26655/AJNANOMAT.¬2021.1.4

H. Karimi-Maleh, R. Darabi, M. Shabani-Nooshabadi, M. Baghayeri, F. Karimi, J. Rouhi, M. Alizadeh, O. Karaman, Y. Vasseghian, C. Karaman. Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food and Chemical Toxicology 162 (2022) 112907. https://doi.org/10.1016/j.fct.2022.112907

H. Setiyanto, D. R. Purwaningsih, V. Saraswaty, N. Mufti, M. A. Zulfikar. Highly selective electrochemical sensing based on electropolymerized ion imprinted polyaniline (IIPANI) on a bismuth modified carbon paste electrode (CPE-Bi) for monitoring Nickel (ii) in river water. RSC Advances 12(45) (2022) 29554-29561. https://doi.org/10.1039/D2RA05196F

F. Hosseini, M. Bahmaei, M. Davallo. Electrochemical determination of propranolol, acetaminophen and folic acid in urine, and human plasma using Cu2O–CuO/rGO/CPE. Russian Journal of Electro-chemistry 57(4) (2021) 357-374. https://doi.org/10.1134/S1023193521040054

J. Zoubir, Y. Elkhotfi, C. Radaa, N. Bougdour, A. Idlahcen, I. Bakas, A. Assabbane. Electrocatalytic detection of dimetridazole using an electrochemical sensor Ag@ CPE. Analytical application. Milk, tomato juice and human urine. Sensors International 2 (2021) 100105. https://doi.org/10.1016/-j.sintl.2021.100105

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York, 2nd edition, 2001.

Downloads

Published

15-03-2023 — Updated on 04-06-2023

How to Cite

Karami-Kolmoti , P., & Zaeimbashi, R. (2023). An electrochemical sensing platform based on a modified carbon paste electrode with graphene/Co3O4 nanocomposite for sensitive propranolol determination . ADMET and DMPK, 11(2), 227–236. https://doi.org/10.5599/admet.1705

Issue

Section

Original Scientific Articles