Pembrolizumab in PD-L1-positive advanced non-small cell lung carcinoma: A meta-analysis of survival benefits and immune-related toxicity events patterns

Original scientific article

Authors

  • Alendra Chakramurty Department of Anatomical Pathology, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia https://orcid.org/0009-0001-0304-8195
  • Adetya Rahma Dinni Department of Pulmonology, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia https://orcid.org/0000-0002-6238-3196
  • Ihda Silvia Department of Internal Medicine, Gunung Jati General Hospital, Cirebon, Indonesia https://orcid.org/0009-0004-1977-8960
  • Aprilyan Laras Cantika Department of Medical Education and Bioethics, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia https://orcid.org/0000-0001-5491-9109
  • Citrawati Dyah Kencono Wungu Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0009-0003-4972-2100

DOI:

https://doi.org/10.5599/admet.2956

Keywords:

pembrolizumab, meta-analysis, non-small cell lung cancer, PD-L1, immunotherapy, biomarker

Abstract

Background and objective: Pembrolizumab has shown significant therapeutic benefit in advanced non-small cell lung cancer (NSCLC), but it remains uncertain which patients will benefit the most, and recent data suggest that programmed death-ligand 1 (PD-L1) expression as a single predictive biomarker is insufficient. This systematic review and meta-analysis looked at the safety and efficacy of pembrolizumab in PD-L1-positive advanced NSCLC patients, with a particular focus on disparities in treatment response to PD-L1 level of expression and demographic characteristics. Method: According to the PRISMA 2020 guidelines, six large databases were searched up to March 2025 for randomized controlled trials comparing pembrolizumab with chemotherapy in patients with such conditions. Overall survival (OS) and progression-free survival (PFS) were chosen as primary outcomes, and overall response rate (ORR) and safety profiles as secondary endpoints. A meta-analysis was conducted using a random-effects model, and the Cochrane risk of bias (ROB2) tool was employed to evaluate study quality. Seven randomized controlled trials involving 4,900 patients were included in the analysis. Key results: Pembrolizumab had a substantially better performance compared to chemo­the­rapy for all the measures of efficacy: OS (hazard ratio (HR) 0.65, 95 % confidence interval (CI): 0.57 to 0.73, P < 0.00001), PFS (HR 0.55, 95 % CI: 0.42 to 0.72, P < 0.0001) and ORR (relative risk 2.10, 95 % CI: 1.51 to 2.93, P < 0.0001). Subgroup analysis showed greater survival benefit in patients younger than 65 years (OS HR 0.55) compared to patients aged 65 and older (OS HR 0.72), and in females (OS HR 0.44) compared to males (OS HR 0.67). Of most significant importance, those with PD-L1 expression <1 % also saw considerable benefit in survival (OS HR 0.60), casting doubts over the existing biomarker-based selection criteria. Conclusion: In conclusion, pembrolizumab achieves clinically meaningful survival benefits and an acceptable toxicity in PD-L1-positive advanced NSCLC. The high efficacy observed even in low PD-L1 expressers, and demographic differences in drug response, suggest that existing patient selection criteria could potentially be extended. These findings justify the application of a more advanced approach involving multiple biomarkers for more precise treatment allocation.

Downloads

Download data is not yet available.

References

[1] N. Duma, R. Santana-Davila, J.R. Molina. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clinic Proceedings 94 (2019) 1623-1640. https://doi.org/10.1016/j.mayocp.2019.01.013

[2] P. Garg, S. Singhal, P. Kulkarni, D. Horne, J. Malhotra, R. Salgia, S. Singhal. Advances in Non-Small Cell Lung Cancer: Current Insights and Future Directions. Journal of Clinical Medicine 13 (2024) 45-56. https://doi.org/10.3390/jcm13144189

[3] Q. Huang, Y. Li, Y. Huang, J. Wu, W. Bao, C. Xue, S. Hu. Advances in molecular pathology and therapy of non-small cell lung cancer. Signal Transduction and Targeted Therapy 10 (2025) 186-195. https://doi.org/10.1038/s41392-025-02243-6

[4] M. Dawood M. Assi. Evaluation of her 2, and ki-67 expression immunohistochemically of gastric cancer in Al-Najaf province. Procedia Environmental Science Engineering and Management. 11 (2024) 465-472. 465-472. https://www.procedia-esem.eu/pdf/issues/2024/no3/46_Dawood_24.pdf

[5] H. Mamdani, S. Matosevic, A. B. Khalid, G. Durm, S. I. Jalal. Immunotherapy in Lung Cancer: Current Landscape and Future Directions. Frontiers in Immunology 13 (2022) 823618. https://doi.org/10.3389/fimmu.2022.823618

[6] H. E. Marei, A. Hasan, G. Pozzoli, C. Cenciarelli. Cancer immunotherapy with immune checkpoint inhibitors (ICIs): potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired. Cancer Cell International 23 (2023) 64-76. https://doi.org/10.1186/s12935-023-02902-0

[7] M. F. Sanmamed, L. Chen. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175 (2018) 313-326. https://doi.org/10.1016/j.cell.2018.09.035

[8] A. Abaza, F. Idris, H. Shaikh, I. Vahora, K. Moparthi, M. Al Rushaidi, M. Muddam. Programmed Cell Death Protein 1 (PD-1) and Programmed Cell Death Ligand 1 (PD-L1) Immunotherapy: A Promising Breakthrough in Cancer Therapeutics. Cureus Journal of Medical Science 1 (2023) e44582. https://doi.org/10.7759/cureus.44582

[9] Y. Shindo, S. Hazama, R. Tsunedomi, N. Suzuki, H. Nagano, Novel biomarkers for personalized cancer immunotherapy, Cancers (Basel) 11 (2019) 1223. https://doi.org/10.3390/cancers11091223

[10] L. V. Mejía-Guarnizo, P. S. Monroy-Camacho, A. D. Turizo-Smith, J. A. Rodríguez-García. The role of immune checkpoints in antitumor response: a potential antitumor immunotherapy. Frontiers in Immunology 14 (2023) 1298571. https://doi.org/10.3389/fimmu.2023.1298571

[11] D. Lee, M. Cho, E. Kim, Y. Seo, J. H. Cha. PD-L1: From cancer immunotherapy to therapeutic implications in multiple disorders. Molecular Therapy 32 (2024) 4235-4255. https://doi.org/10.1016/j.ymthe.2024.09.026

[12] A. Mohammed, A. Al-Gawhari. Bioavailability enhancement techniques, and in vitro-in vivo evaluation of rosuvastatin calcium-cyclodextrin inclusion complex nanofibers, Procedia Environ-mental Science Engineering and Management. 11 (2024) 117-134. https://www.procedia-esem.eu/pdf/issues/2024/no1/13_Mohammed_24.pdf

[13] J. H. Cha, L. C. Chan, C. W. Li, J. L. Hsu, M. C. Hung. Mechanisms Controlling PD-L1 Expression in Cancer. Molecular Cell 76 (2019) 359-370. https://doi.org/10.1016/j.molcel.2019.09.030

[14] P. G. Abrams R. K. Oldham. Monoclonal Antibody Therapy of Solid Tumors. Monoclonal Antibodies in Oral Cancer Therapy 3 (1985) 103-120. https://doi.org/10.1007/978-1-4613-2627-4_5

[15] Yuliana, I. Maulana, M. Prenggono, I. Oktavianti, N. Kania, R. Panghiyangani, N. Hasanah. Mercury exposure triggers diabetes mellitus through a pancreatic beta cell endoplasmic reticulum stress mechanism. Revista Latinoamericana de Hipertension 20 (2025) 410-416. http://doi.org/10.5281/zenodo.15739647

[16] W. Liu, G. Huo, P. Chen. Clinical benefit of pembrolizumab in treatment of first line non-small cell lung cancer: a systematic review and meta-analysis of clinical characteristics. BMC Cancer 23 (2023). http://doi.org/10.1186/s12885-023-10959-3

[17] A. Patnaik, S. Kang, D. Rasco, K. Papadopoulos, J. Elassaiss-Schaap, M. Beeram, A. W. Tolcher. Phase I study of pembrolizumab (MK-3475; Anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clinical Cancer Research 21 (2015) 4286-4293. http://doi.org/10.1158/1078-0432.CCR-14-2607

[18] L. Pai-Scherf, G. Blumenthal, H. Li, S. Subramaniam, P. Mishra‐Kalyani, K. He, R. Pazdur. Approval Summary: Pembrolizumab for Treatment of Metastatic Non-Small Cell Lung Cancer: First-Line Therapy and Beyond. Oncologist 22 (2017) 1392-1399. http://doi.org/10.1634/theoncologist.2017-0078

[19] P. Keynote. Pembrolizumab KEYNOTE-001: An adaptive study leading to accelerated approval for two indications and a companion diagnostic. Annals of Oncology 28 (2017) 1388-1398. http://doi.org/10.1093/annonc/mdx076

[20] M. Awad, S. Gadgeel, H. Borghaei, A. Patnaik, J. Yang, S. Powell, C. Langer. Long-Term Overall Survival From KEYNOTE-021 Cohort G: Pemetrexed and Carboplatin with or without Pembrolizumab as First-Line Therapy for Advanced Nonsquamous NSCLC. Journal of Thoracic Oncology 16 (2021) 162-168. http://doi.org/10.1016/j.jtho.2020.09.015

[21] F. Facchinetti, G. Mazzaschi, F. Barbieri, F. Passiglia, F. Mazzoni, R. Berardi, M. Tiseo. First-line pembrolizumab in advanced non-small cell lung cancer patients with poor performance status. European Journal of Cancer 130 (2020) 155-167. http://doi.org/10.1016/j.ejca.2020.02.023

[22] M. Reck. Pembrolizumab as first-line therapy for metastatic non-small-cell lung cancer. Immunotherapy 10 (2018) 93-105. http://doi.org/10.2217/imt-2017-0121

[23] V. Alessi, B. Ricciuti, E. Jiménez-Aguilar, F. Hong, Z. Wei, M. Nishino, M. Awad. Outcomes to first-line pembrolizumab in patients PD-L1-high (≥50%) non-small cell lung cancer and a poor performance status. Journal for Immunotherapy of Cancer 8 (2020) 78-87. http://doi.org/10.1136/jitc-2020-001007

[24] D. Ksienski, E. Wai, D. Alex, N. Croteau, A. Freeman, A. Chan, M. Lesperance Prognostic significance of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for advanced non-small cell lung cancer patients with high PD-L1 tumor expression receiving pembrolizumab. Translational lung Cancer Research. 10 (2021) 355-367. http://doi.org/10.21037/tlcr-20-541

[25] S. Ben Dori, A. Aizic, E. Sabo, D. Hershkovitz. Spatial heterogeneity of PD-L1 expression and the risk for misclassification of PD-L1 immunohistochemistry in non-small cell lung cancer. Lung Cancer 147 (2020) 91-98. http://doi.org/10.1016/j.lungcan.2020.07.012

[26] Y. Saito S. Horiuchi, H. Morooka, T. Ibi, N. Takahashi, T. Ikeya, E. Hoshi. Inter-tumor heterogeneity of PD-L1 expression in non-small cell lung cancer. Journal of Thoracic Disease 11 (2019) 4982-4991. http://doi.org/10.21037/jtd.2019.12.24

[27] E. Sajjadi, K. Venetis, C. Scatena, N. Fusco. Biomarkers for precision immunotherapy in the metastatic setting: Hope or reality?. Ecancermedicalscience, 14 (2020) 78-89. http://doi.org/10.3332/ECANCER.2020.1150

[28] Mhanna, N. Guibert, J. Milia, J. Mazieres. When to Consider Immune Checkpoint Inhibitors in Oncogene-Driven Non-Small Cell Lung Cancer?. Current Treatment Options in Oncology 20 (2019) 65-69. http://doi.org/10.1007/s11864-019-0652-3

[29] Stares, T. Ding, C. Stratton, F. Thomson, M. Baxter, H. Cagney, I. Phillips. Biomarkers of systemic inflammation predict survival with first-line immune checkpoint inhibitors in non-small-cell lung cancer. ESMO Open 7 (2022) 100445. http://doi.org/10.1016/j.esmoop.2022.100445

[30] K. L. Ayers, M. Ma, G. Debussche, D. Corrigan, J. McCafferty, K. Lee, S. D. Li. A composite biomarker of neutrophil-lymphocyte ratio and hemoglobin level correlates with clinical response to PD-1 and PD-L1 inhibitors in advanced non-small cell lung cancers. BMC Cancer 21 (2021) 441. http://doi.org/10.1186/s12885-021-08194-9

[31] Y. Zhou, Z. Lin, X. Zhang, C. Chen, H. Zhao, S. Hong, L. Zhang. First-line treatment for patients with advanced non-small cell lung carcinoma and high PD-L1 expression: Pembrolizumab or pembrolizumab plus chemotherapy. Journal for Immunotherapy of Cancer 7 (2019) 120-129. http://doi.org/10.1186/s40425-019-0600-6

[32] E. Fountzilas, S. Lampaki, G. Koliou, A. Koumarianou, S. Levva, A. Vagionas, D. Bafaloukos. Real-world safety and efficacy data of immunotherapy in patients with cancer and autoimmune disease: the experience of the Hellenic Cooperative Oncology Group. Cancer Immunology 71 (2022) 327-337. http://doi.org/10.1007/s00262-021-02985-6

[33] B. Tomasik, M. Bieńkowski, M. Braun, S. Popat, R. Dziadziuszko. Effectiveness and safety of immunotherapy in NSCLC patients with ECOG PS score ≥2 - Systematic review and meta-analysis. Lung Cancer 158 (2021) 97-106. http://doi.org/10.1016/j.lungcan.2021.06.004

[34] C. J. D. Wallis, M. Butaney, R. Satkunasivam, S. Freedland, S. Patel, O. Hamid, Z. Klaassen. Association of Patient Sex with Efficacy of Immune Checkpoint Inhibitors and Overall Survival in Advanced Cancers: A Systematic Review and Meta-analysis. JAMA Oncology 5 (2019) 529-536. http://doi.org/10.1001/jamaoncol.2018.5904

[35] F. Yang, S. Markovic, J. Molina, T. Halfdanarson, L. Pagliaro, A. Chintakuntlawar Y. Wang. Association of Sex, Age, and Eastern Cooperative Oncology Group Performance Status with Survival Benefit of Cancer Immunotherapy in Randomized Clinical Trials: A Systematic Review and Meta-analysis. JAMA Network Open 3 (2020) e2012534. http://doi.org/10.1001/jamanetworkopen.2020.12534

[36] Schwartzberg, B. Korytowsky, J. Penrod, Y. Zhang, T. Le, C. Batenchuk, L. Krug. Real-World Clinical Impact of Immune Checkpoint Inhibitors in Patients with Advanced/Metastatic Non-Small Cell Lung Cancer after Platinum Chemotherapy. Clinical Lung Cancer 20 (2019) 287-296.e4. http://doi.org/10.1016/j.cllc.2019.04.004

[37] A. F. Kaizal, J. Algburi, M. Al-Haidarey. Heavy metal bioaccumulation in the blood and lungs of white albino rats exposed to welding fume. Procedia of Environmental Science Engineering and Mana-gement 11 (2024) 83-89. https://www.procedia-esem.eu/pdf/issues/2024/no1/10_Kaizal_24.pdf

[38] K. Amrane. First-line pembrolizumab for non-small cell lung cancer patients with PD-L1 ≥50% in a multicenter real-life cohort: The PEMBREIZH study. Cancer Medicine 9 (2020) 2309-2316. http://doi.org/10.1002/cam4.2806

[39] G. Wagner, H. K. Stollenwerk, I. Klerings, M. Pecherstorfer, G. Gartlehner, J. Singer. Efficacy and safety of immune checkpoint inhibitors in patients with advanced non-small cell lung cancer (NSCLC): a systematic literature review. Oncoimmunology 9 (2020) 45-59. http://doi.org/10.1080/2162402X.2020.1774314

[40] W. You, M. Liu, J. Miao, Y. Liao, Y. Song, D. Cai. A network meta-analysis comparing the efficacy and safety of anti-PD-1 with anti-PD-L1 in non-small cell lung cancer. Journal of Cancer 9 (2018) 1200-1206. http://doi.org/10.7150/jca.22361

[41] K. Nesline, T. Knight, S. Colman, K. Patel. Economic Burden of Checkpoint Inhibitor Immunotherapy for the Treatment of Non-Small Cell Lung Cancer in US Clinical Practice. Clinical Therapeutics 42 (2020) 1682-1698. http://doi.org/10.1016/j.clinthera.2020.06.018

[42] X. Ma, L. Bellomo, K. Magee, C. Bennette, O. Tymejczyk, M. Samant, A. Bourla Characterization of a Real-World Response Variable and Comparison with RECIST-Based Response Rates from Clinical Trials in Advanced NSCLC. Advances in Therapy 38 (2021) 1843-1859. http://doi.org/10.1007/s12325-021-01659-0

[43] L. Paz-Ares, A. Luft, D. Vicente, A. Tafreshi, M. Gümüş, J. Mazières D. Kowalski. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. New England Journal of Medicine 379 (2018) 2040-2051. http://doi.org/10.1056/nejmoa1810865

[44] R. Herbst, P. Baas, D. Kim, E. Felip, J. Pérez-Gracia, J. Han, E. Garon. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. The Lancet 387 (2016) 1540-1550. http://doi.org/10.1016/S0140-6736(15)01281-7

[45] C. Langer, S. Gadgeel, H. Borghaei, V. Papadimitrakopoulou, A. Patnaik, S. Powell, L. Gandhi. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. The Lancet Oncology 17 (2016) 1497-1508. http://doi.org/10.1016/S1470-2045(16)30498-3

[46] T. Mok, Y. Wu, I. Kudaba, D. Kowalski, B. Cho, B. Turna, G. Martinengo. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. The Lancet 393 (2019) 1819-1830. http://doi.org/10.1016/S0140-6736(18)32409-7

[47] S. Ren, J. Feng, S. Ma, H. Chen, Z. Ma, C. Huang, C. Zhou. KEYNOTE‐033: Randomized phase 3 study of pembrolizumab vs docetaxel in previously treated, PD‐L1‐positive, advanced NSCLC. International Journal of Cancer 153 (2023) 623-634. http://doi.org/10.1002/ijc.34532

[48] L. Gandhi, D. Rodgríguez-Abreu, S. Gadgeel, E. Esteban, E. Felip, M. Garassino. Abstract CT075: KEYNOTE-189: Randomized, double-blind, phase 3 study of pembrolizumab (pembro) or placebo plus pemetrexed (pem) and platinum as first-line therapy for metastatic NSCLC. Cancer Research 78 (2018) CT075. https://doi.org/10.1158/1538-7445.AM2018-CT075

[49] J. R. Brahmer. Safety profile of pembrolizumab monotherapy based on an aggregate safety evaluation of 8937 patients. European Journal of Cancer 199 (2024) 113530. http://doi.org/10.1016/j.ejca.2024.113530

[50] G. Pentheroudakis. Recent eUpdate to the ESMO Clinical Practice Guidelines on early and locally advanced non-small-cell lung cancer (NSCLC). Annals of Oncology 31 (2020) 1265-1266. http://doi.org/10.1016/j.annonc.2020.05.023

[51] X. Shen, B. Zhao. Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: Meta-analysis. British Medical Journal 362 (2018) 43-49. http://doi.org/10.1136/bmj.k3529

[52] F. Passiglia, G. Bronte, V. Bazan, C. Natoli, S. Rizzo, A. Galvano, A. Russo PD-L1 expression as predictive biomarker in patients with NSCLC: A pooled analysis. Oncotarget 7 (2016) 19738-19747. http://doi.org/10.18632/oncotarget.7582

[53] R. Ferrara, L. Mezquita, E. Auclin, N. Chaput, B. Besse. Immunosenescence and immunecheckpoint inhibitors in non-small cell lung cancer patients: Does age really matter. Cancer Treatment Reviews 60 (2017) 60-68. http://doi.org/10.1016/j.ctrv.2017.08.003

[54] C. Wang. Effect of sex on the efficacy of patients receiving immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer Medicine 8 (2019) 4023-4031. http://doi.org/10.1002/cam4.2280

[55] D. Planchard, S. Popat, K. Kerr, S. Novello, E. Smit, C. Faivre-Finn. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 29 (2018) iv192-iv237. http://doi.org/10.1093/annonc/mdy275

[56] J. McLaughlin. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncology 2 (2016) 46-54. http://doi.org/10.1001/jamaoncol.2015.3638

[57] C. Tumeh, C. Harview, J. Yearley, I. Shintaku, E. Taylor, L. Robert, A. Ribas. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515 (2014) 568-571. http://doi.org/10.1038/nature13954

[58] K. Ninomiya, I. Oze, Y. Kato, T. Kubo, E. Ichihara, K. Rai, K. Hotta. Influence of age on the efficacy of immune checkpoint inhibitors in advanced cancers: a systematic review and meta-analysis. Acta Oncologica 59 (2020) 249-256. http://doi.org/10.1080/0284186X.2019.1695062

[59] E. Muchnik, K. Loh, M. Strawderman, A. Magnuson, S. Mohile, V. Estrah, R. Maggiore. Immune Checkpoint Inhibitors in Real-World Treatment of Older Adults with Non-Small Cell Lung Cancer. Journal of the American Geriatrics Society 67 (2019) 905-912. http://doi.org/10.1111/jgs.15750

[60] S. L. Klein, K. L. Flanagan. Sex differences in immune responses. Nature Reviews Immunology 16 (2016) 626-638. http://doi.org/10.1038/nri.2016.90

[61] K. A. Marrone, W. Ying, J. Naidoo. Immune-Related Adverse Events from Immune Checkpoint Inhibitors. Clinical Pharmacology & Therapeutics 100 (2016) 242-251. http://doi.org/10.1002/cpt.394

[62] R. Jin. C. Liu, S. Zheng, X. Wang, X. Feng, H. Li. Molecular heterogeneity of anti-PD-1/PD-L1 immunotherapy efficacy is correlated with tumor immune microenvironment in East Asian patients with non-small cell lung cancer. Cancer Biology & Medicine 17 (2020) 768-781. http://doi.org/10.20892/j.issn.2095-3941.2020.0121

[63] C. Zhang, J. Zhang, J. Tan, P. Tian, W. Li. Cost-Effectiveness of Pembrolizumab for the treatment of Non-Small-Cell lung cancer: A systematic review. Frontiers in Oncology 12 (2022) 198-205. http://doi.org/10.3389/fonc.2022.815587

[64] F. A. van Delft. Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer. Heliyon 8 (2022) e10932. http://doi.org/10.1016/j.heliyon.2022.e10932

[65] S. M. Batool, A. Yekula, P. Khanna, T. Hsia, A. Gamblin, E. Ekanayake. The Liquid Biopsy Consortium: Challenges and opportunities for early cancer detection and monitoring. Cell Reports Medicine 4 (2023) 101198. http://doi.org/10.1016/j.xcrm.2023.101198

[66] M. Qiao, T. Jiang, S. Ren, C. Zhou. Combination Strategies on the Basis of Immune Checkpoint Inhibitors in Non-Small-Cell Lung Cancer: Where Do We Stand?. Clinical Lung Cancer 19 (2018) 1-11. http://doi.org/10.1016/j.cllc.2017.06.005

[67] F. Conforti. Sex-Based Heterogeneity in Response to Lung Cancer Immunotherapy: A Systematic Review and Meta-Analysis. Journal of the National Cancer Institute 111 (2019) 772-781. http://doi.org/10.1093/jnci/djz094

[68] V. Velcheti, S. Chandwani, X. Chen, M. Catherine Pietanza, T. Burke. First-line pembrolizumab monotherapy for metastatic PD-L1-positive NSCLC: Real-world analysis of time on treatment. Immunotherapy 11 (2019) 889-901. http://doi.org/10.2217/imt-2019-0061

[69] S. Liang, H. Wang, H. Tian, Z. Xu, M. Wu, D. Hua, C. Li. The prognostic biological markers of immunotherapy for non-small cell lung cancer: current landscape and future perspective. Frontiers in Immunology 14 (2023) 1249980. http://doi.org/10.3389/fimmu.2023.1249980

[70] A. Prelaj, E. Galli, V. Miskovic, M. Pesenti, G. Viscardi, B. Pedica, A. Pedrocchi. Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients. Frontiers in Oncology 12 (2023) 1078822. http://doi.org/10.3389/fonc.2022.1078822

Downloads

Published

14-10-2025

Issue

Section

Pharmacokinetics and toxicology

How to Cite

Pembrolizumab in PD-L1-positive advanced non-small cell lung carcinoma: A meta-analysis of survival benefits and immune-related toxicity events patterns: Original scientific article. (2025). ADMET and DMPK, 13(5), 2956. https://doi.org/10.5599/admet.2956

Similar Articles

1-10 of 223

You may also start an advanced similarity search for this article.