Comparison of lipophilic and size-exclusion membranes: creating sink conditions with cyclodextrin

Original scientific article

Authors

  • Petra Tőzsér Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem Quay, H-1111, Budapest, Hungary https://orcid.org/0009-0007-4725-8884
  • Szabina Kádár Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem Quay, H-1111, Budapest, Hungary https://orcid.org/0000-0002-7818-2145
  • Edina Szabó Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem Quay, H-1111, Budapest, Hungary https://orcid.org/0000-0001-9616-5122
  • Hajnalka Pataki Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem Quay, H-1111, Budapest, Hungary https://orcid.org/0000-0002-8103-0601
  • Péter Sóti Lavet Pharmaceutical Ltd., 6 Batthyány Street., H-2143, Kistarcsa, Hungary https://orcid.org/0009-0006-6765-9047
  • Péter Laczay Lavet Pharmaceutical Ltd., 6 Batthyány Street., H-2143, Kistarcsa, Hungary https://orcid.org/0009-0001-2578-5604
  • György Tibor Balogh Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Semmelweis University, 9 Hőgyes Endre Street., H-1092, Budapest, Hungary; Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői Street., H-1085, Budapest, Hungary and Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem Quay., H-1111, Budapest, Hungary https://orcid.org/0000-0001-8273-1760
  • Bálint Sinkó Pion Inc., Billerica, 10 Cook Street, Massachusetts 01821, USA https://orcid.org/0009-0005-8256-4348
  • Eniko Borbas Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem Quay, H-1111, Budapest, Hungary https://orcid.org/0000-0002-9393-9978

DOI:

https://doi.org/10.5599/admet.2859

Keywords:

Unstirred water layer, solubility, supersaturation ratio, carvedilol

Abstract

Background and purpose: The effective transport of an active pharmaceutical ingredient across various membrane systems is critical for enhancing its bioavailability, especially in formulations involving solubilizing agents. This study aims to investigate the permeability differences of carvedilol between lipophilic (organic solvent) and size-exclusion membranes in the presence of 2-hydroxypropyl-beta-cyclodextrin in just the acceptor compartment or both sides of the membrane using in vitro side-by-side diffusion cell assays. Experimental approach: Cyclodextrins (CDs) on the acceptor side significantly improved flux and permeability for the lipophilic membrane. In contrast, with size-exclusion membranes that allow the permeation of CDs and their complexes, the benefits of sink conditions were completely diminished. When the same amount of CD was introduced on both sides, the negative effect of CD on the donor side surpassed the positive sink effects on the acceptor side, resulting in reduced flux and permeability across all membrane types. Key results: A novel aspect of this work is the assessment of the applicability of a previously described general mathematical equation for sink conditions. Findings indicated that the supersaturation ratio between donor and acceptor compartments serves as the primary driving force of the membrane transport. For the lipophilic membrane, CDs on the acceptor side not only influenced the driving force of the transport by enhancing the solubility of carvedilol in the acceptor compartment but also altered the proportionality coefficient, hence modifying the apparent thickness of the unstirred water layer. The impact was not observed with size-exclusion membranes. The applicability of the mathematical model was additionally evaluated for CD placed on both sides of the membrane. Conclusion: The model effectively describes the impact of CD placed on the donor side when the solid membrane permits only the drug’s permeation, as in the case of a lipophilic membrane, where the solubilizing additive cannot pass through. It is also applicable when the solubilizing additive permeates slowly and has minimal influence on transport, such as with a size-exclusion membrane with a 1 kDa molecular weight cut-off. The model remains suitable if the additive is small enough in hydrodynamic size to permeate the membrane, but no concentration gradient exists to drive its transport, for example, with a 6 kDa size-exclusion membrane containing the same CD concentration on both sides of the membrane.

Downloads

Download data is not yet available.

References

[1] P. Tőzsér, S. Kádár, E. Szabó, M. Dobó, G. Tóth, G.T. Balogh, P. Sóti, B. Sinkó, E. Borbás. Comparison of Lipophilic and Size-Exclusion Membranes: The Effect of Stirring and Cyclodextrin in the Donor Compartment. ADMET and DMPK 13(4) (2025) 2753. https://doi.org/10.5599/admet.2753 DOI: https://doi.org/10.5599/admet.2753

[2] A. Sitovs, V. Mohylyuk. Ex vivo permeability study of poorly soluble drugs across gastrointestinal membranes: acceptor compartment media composition. Drug Discovery Today 29 (2024) 104214. https://doi.org/https://doi.org/10.1016/j.drudis.2024.104214 DOI: https://doi.org/10.1016/j.drudis.2024.104214

[3] F.L. Holzem, I.H. Jensen, J. Petrig Schaffland, C. Stillhart, M. Brandl, A. Bauer-Brandl. Combining in vitro dissolution/permeation with microdialysis sampling: Capabilities and limitations for biopharma-ceutical assessments of supersaturating drug formulations. European Journal of Pharmaceutical Sciences 188 (2023) 106533. https://doi.org/https://doi.org/10.1016/j.ejps.2023.106533 DOI: https://doi.org/10.1016/j.ejps.2023.106533

[4] P.D. Nunes, A.F. Ferreira, J.F. Pinto, A. Bauer-Brandl, M. Brandl, J. Henriques, A.M. Paiva. In vitro dissolution/permeation tools for amorphous solid dispersions bioavailability forecasting II: Comparison and mechanistic insights. European Journal of Pharmaceutical Sciences 188 (2023) 106513. https://doi.org/https://doi.org/10.1016/j.ejps.2023.106513 DOI: https://doi.org/10.1016/j.ejps.2023.106513

[5] A. Cuoco, J.B. Eriksen, B. Luppi, M. Brandl, A. Bauer-Brandl. When Interactions Between Bile Salts and Cyclodextrin Cause a Negative Food Effect: Dynamic Dissolution/Permeation Studies with Itraconazole (Sporanox®) and Biomimetic Media. Journal of Pharmaceutical Sciences 112 (2023) 1372-1378. https://doi.org/https://doi.org/10.1016/j.xphs.2022.12.010 DOI: https://doi.org/10.1016/j.xphs.2022.12.010

[6] F.L. Holzem, A. Weck, J.P. Schaffland, C. Stillhart, S. Klein, A. Bauer-Brandl, M. Brandl. Biopredictive capability assessment of two dissolution/permeation assays, µFLUX™ and PermeaLoop™, using supersaturating formulations of Posaconazole. European Journal of Pharmaceutical Sciences 176 (2022) 106260. https://doi.org/https://doi.org/10.1016/j.ejps.2022.106260 DOI: https://doi.org/10.1016/j.ejps.2022.106260

[7] K. Sugano. Introduction to computational oral absorption simulation. Expert Opin Drug Metab Toxicol 5 (2009) 259-293. https://doi.org/10.1517/17425250902835506 DOI: https://doi.org/10.1517/17425250902835506

[8] K. Sugano, Biopharmaceutics Modeling and Simulations: Theory, Practice, Methods, and Applications, John Wiley & Sons, 2012. https://doi.org/https://doi.org/10.1002/9781118354339.ch7 DOI: https://doi.org/10.1002/9781118354339

[9] W. Nernst, Theoretical Chemistry from the Standpoint of Avogadro’s Rule and Thermodynamics, Macmillan and Co., Limited, London, UK, 1911. https://archive.org/details/chemistrytheo00nernrich/page/n5/mode/2up

[10] T. Higuchi. Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. Journal of Pharmaceutical Sciences 50 (1961) 874-875. https://doi.org/https://doi.org/10.1002/jps.2600501018 DOI: https://doi.org/10.1002/jps.2600501018

[11] T. Higuchi. Mechanisms of Sustained Action Mediation. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. Journal of Pharmaceutical Sciences 52 (1963) 1145-1149. https://doi.org/10.1002/jps.2600521210 DOI: https://doi.org/10.1002/jps.2600521210

[12] J. Siepmann, N.A. Peppas. Higuchi equation: derivation, applications, use and misuse. Int J Pharm 418 (2011) 6-12. https://doi.org/10.1016/j.ijpharm.2011.03.051 DOI: https://doi.org/10.1016/j.ijpharm.2011.03.051

[13] A. Avdeef, Absorption and Drug Development: Solubility, Permeability, and Charge State; 2nd ed, John Wiley and Sons, United States. https://doi.org/10.1002/9781118286067 DOI: https://doi.org/10.1002/9781118286067

[14] M. Czajkowski, A.-C. Jacobsen, A. Bauer-Brandl, M. Brandl, P. Skupin-Mrugalska. Hydrogenated phospholipid, a promising excipient in amorphous solid dispersions of fenofibrate for oral delivery: Preparation and in-vitro biopharmaceutical characterization. International Journal of Pharmaceutics 644 (2023) 123294. https://doi.org/https://doi.org/10.1016/j.ijpharm.2023.123294 DOI: https://doi.org/10.1016/j.ijpharm.2023.123294

[15] A.-C. Jacobsen, P.A. Elvang, A. Bauer-Brandl, M. Brandl. A dynamic in vitro permeation study on solid mono- and diacyl-phospholipid dispersions of celecoxib. European Journal of Pharmaceutical Sciences 127 (2019) 199-207. https://doi.org/https://doi.org/10.1016/j.ejps.2018.11.003 DOI: https://doi.org/10.1016/j.ejps.2018.11.003

[16] S. Koplin, M. Kumpugdee-Vollrath, A. Bauer-Brandl, M. Brandl. Surfactants enhance recovery of poorly soluble drugs during microdialysis sampling: Implications for in vitro dissolution-/permeation-studies. Journal of Pharmaceutical and Biomedical Analysis 145 (2017) 586-592. https://doi.org/https://doi.org/10.1016/j.jpba.2017.07.022 DOI: https://doi.org/10.1016/j.jpba.2017.07.022

[17] D. Sironi, J. Rosenberg, A. Bauer-Brandl, M. Brandl. Dynamic dissolution-/permeation-testing of nano- and microparticle formulations of fenofibrate. European Journal of Pharmaceutical Sciences 96 (2017) 20-27. https://doi.org/https://doi.org/10.1016/j.ejps.2016.09.001 DOI: https://doi.org/10.1016/j.ejps.2016.09.001

[18] J.R. Jørgensen, W. Mohr, M. Rischer, A. Sauer, S. Mistry, T. Rades, A. Müllertz. In vitro-in vivo relationship for amorphous solid dispersions using a double membrane dissolution-permeation setup. European Journal of Pharmaceutics and Biopharmaceutics 188 (2023) 26-32. https://doi.org/https://doi.org/10.1016/j.ejpb.2023.04.026 DOI: https://doi.org/10.1016/j.ejpb.2023.04.026

[19] T. Loftsson, S.B. Vogensen, C. Desbos, P. Jansook. Carvedilol: solubilization and cyclodextrin complexation: a technical note. AAPS PharmSciTech 9 (2008) 425-430. https://doi.org/10.1208/s12249-008-9055-7 DOI: https://doi.org/10.1208/s12249-008-9055-7

[20] T. Loftsson. Cyclodextrins in Parenteral Formulations. Journal of Pharmaceutical Sciences 110 (2021) 654-664. https://doi.org/10.1016/j.xphs.2020.10.026 DOI: https://doi.org/10.1016/j.xphs.2020.10.026

[21] S. Sripetch, M. Prajapati, T. Loftsson. Cyclodextrins and Drug Membrane Permeation: Thermodynamic Considerations. Journal of Pharmaceutical Sciences 111 (2022) 2571-2580. https://doi.org/https://doi.org/10.1016/j.xphs.2022.04.015 DOI: https://doi.org/10.1016/j.xphs.2022.04.015

[22] P. Berben, E. Borbás, Intestinal Drug Absorption: Cell-Free Permeation Systems, in Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays, F.J. Hock, M.R. Gralinski, M.K. Pugsley (Eds.), Springer International Publishing, Cham, 2022, p. 1-29. https://doi.org/10.1007/978-3-030-73317-9_95-1 DOI: https://doi.org/10.1007/978-3-030-73317-9_95-1

[23] E. Borbás, A. Balogh, K. Bocz, J. Müller, É. Kiserdei, T. Vigh, B. Sinkó, A. Marosi, A. Halász, Z. Dohányos, L. Szente, G.T. Balogh, Z.K. Nagy. In vitro dissolution-permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFlux™. International Journal of Pharmaceutics 491 (2015) 180-189. https://doi.org/10.1016/j.ijpharm.2015.06.019 DOI: https://doi.org/10.1016/j.ijpharm.2015.06.019

[24] [24] A. Avdeef, M. Strafford, E. Block, M.P. Balogh, W. Chambliss, I. Khan. Drug absorption in vitro model: filter-immobilized artificial membranes. 2. Studies of the permeability properties of lactones in Piper methysticum Forst. Eur J Pharm Sci 14 (2001) 271-280. https://doi.org/10.1016/s0928-0987(01)00191-9 DOI: https://doi.org/10.1016/S0928-0987(01)00191-9

[25] [25] B. Sinkó, T.M. Garrigues, G.T. Balogh, Z.K. Nagy, O. Tsinman, A. Avdeef, K. Takács-Novák. Skin-PAMPA: a new method for fast prediction of skin penetration. European Journal of Pharmaceutical Sciences 45 (2012) 698-707. https://doi.org/10.1016/j.ejps.2012.01.011 DOI: https://doi.org/10.1016/j.ejps.2012.01.011

[26] G.E. Flaten, A.B. Dhanikula, K. Luthman, M. Brandl. Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. European Journal of Pharmaceutical Sciences 27 (2006) 80-90. https://doi.org/10.1016/j.ejps.2005.08.007 DOI: https://doi.org/10.1016/j.ejps.2005.08.007

[27] M. di Cagno, H.A. Bibi, A. Bauer-Brandl. New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs. European Journal of Pharmaceutical Sciences 73 (2015) 29-34. https://doi.org/10.1016/j.ejps.2015.03.019 DOI: https://doi.org/10.1016/j.ejps.2015.03.019

[28] A. Avdeef. The rise of PAMPA. Expert Opin Drug Metab Toxicol 1 (2005) 325-342. https://doi.org/10.1517/17425255.1.2.325 DOI: https://doi.org/10.1517/17425255.1.2.325

[29] B. Faller. Artificial membrane assays to assess permeability. Current Drug Metabolism 9 (2008) 886-892. https://doi.org/10.2174/138920008786485227 DOI: https://doi.org/10.2174/138920008786485227

[30] M. Kansy, F. Senner, K. Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry 41 (1998) 1007-1010. https://doi.org/10.1021/jm970530e DOI: https://doi.org/10.1021/jm970530e

[31] P. Berben, A. Bauer-Brandl, M. Brandl, B. Faller, G.E. Flaten, A.-C. Jacobsen, J. Brouwers, P. Augustijns. Drug permeability profiling using cell-free permeation tools: Overview and applications. European Journal of Pharmaceutical Sciences 119 (2018) 219-233. https://doi.org/https://doi.org/10.1016/j.ejps.2018.04.016 DOI: https://doi.org/10.1016/j.ejps.2018.04.016

[32] A. Adhikari, P.R. Seo, J.E. Polli. Characterization of Dissolution-Permeation System using Hollow Fiber Membrane Module and Utility to Predict in Vivo Drug Permeation Across BCS Classes. Journal of Pharmaceutical Sciences 111 (2022) 3075-3087. https://doi.org/10.1016/j.xphs.2022.07.002 DOI: https://doi.org/10.1016/j.xphs.2022.07.002

[33] J.P. O'Shea, P. Augustijns, M. Brandl, D.J. Brayden, J. Brouwers, B.T. Griffin, R. Holm, A.C. Jacobsen, H. Lennernäs, Z. Vinarov, C.M. O'Driscoll. Best practices in current models mimicking drug permeability in the gastrointestinal tract - An UNGAP review. European Journal of Pharmaceutical Sciences 170 (2022) 106098. https://doi.org/10.1016/j.ejps.2021.106098 DOI: https://doi.org/10.1016/j.ejps.2021.106098

[34] E. Borbás, P. Tőzsér, K. Tsinman, O. Tsinman, K. Takács-Novák, G. Völgyi, B. Sinkó, Z.K. Nagy. Effect of Formulation Additives on Drug Transport through Size-Exclusion Membranes. Molecular Pharmaceutics 15 (2018) 3308-3317. https://doi.org/10.1021/acs.molpharmaceut.8b00343 DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00343

[35] P. Berben, J. Brouwers, P. Augustijns. The artificial membrane insert system as predictive tool for formulation performance evaluation. International Journal of Pharmaceutics 537 (2018) 22-29. https://doi.org/https://doi.org/10.1016/j.ijpharm.2017.12.025 DOI: https://doi.org/10.1016/j.ijpharm.2017.12.025

[36] [36] P. Berben, J. Brouwers, P. Augustijns. Assessment of Passive Intestinal Permeability Using an Artificial Membrane Insert System. Journal of Pharmaceutical Sciences 107 (2018) 250-256. https://doi.org/10.1016/j.xphs.2017.08.002 DOI: https://doi.org/10.1016/j.xphs.2017.08.002

[37] C. Washington. Drug release from microdisperse systems: a critical review. International Journal of Pharmaceutics 58 (1990) 1-12. https://doi.org/10.1016/0378-5173(90)90280-H DOI: https://doi.org/10.1016/0378-5173(90)90280-H

[38] P. Saokham, A. Sá Couto, A. Ryzhakov, T. Loftsson. The self-assemble of natural cyclodextrins in aqueous solutions: Application of miniature permeation studies for critical aggregation concentration (cac) determinations. International Journal of Pharmaceutics 505 (2016) 187-193. https://doi.org/10.1016/j.ijpharm.2016.03.049 DOI: https://doi.org/10.1016/j.ijpharm.2016.03.049

[39] J. Bouayed, L. Hoffmann, T. Bohn. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry 128 (2011) 14-21. https://doi.org/10.1016/j.foodchem.2011.02.052 DOI: https://doi.org/10.1016/j.foodchem.2011.02.052

[40] S.A. Raina, G.G. Zhang, D.E. Alonzo, J. Wu, D. Zhu, N.D. Catron, Y. Gao, L.S. Taylor. Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs. Pharmaceutical Research 32 (2015) 3350-3364. https://doi.org/10.1007/s11095-015-1712-4 DOI: https://doi.org/10.1007/s11095-015-1712-4

[41] A.S. Indulkar, Y. Gao, S.A. Raina, G.G. Zhang, L.S. Taylor. Exploiting the Phenomenon of Liquid-Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug. Molecular Pharmaceutics 13 (2016) 2059-2069. https://doi.org/10.1021/acs.molpharmaceut.6b00202 DOI: https://doi.org/10.1021/acs.molpharmaceut.6b00202

[42] G. Caron, G. Steyaert, A. Pagliara, F. Reymond, P. Crivori, P. Gaillard, P.A. Carrupt, A. Ardeef, J. Comer, K.J. Box, H.H. Girault, B. Testa. Structure-Lipophilicity Relationships of Neutral and Protonated β-Blockers, Part I, Intra- and Intermolecular Effects in Isotropic Solvent Systems. Wiley-VHCA AG, 1999, pp. 1211-1222. https://doi.org/10.1002/(SICI)1522-2675(19990804)82:8%3C1211::AID-HLCA1211%3E3.0.CO;2-K DOI: https://doi.org/10.1002/(SICI)1522-2675(19990804)82:8<1211::AID-HLCA1211>3.0.CO;2-K

[43] A. Singh, M. Pallastrelli, M. Santoro. Direct chiral separations of third generation b-blockers through high performance liquid chromatography. Scientia Chromatographica 7 (2015) 65-84. https://doi.org/10.4322/sc.2015.017 DOI: https://doi.org/10.4322/sc.2015.017

[44] N.A. Al-Rawashdeh, K.S. Al-Sadeh, M.B. Al-Bitar. Physicochemical study on microencapsulation of hydroxypropyl-beta-cyclodextrin in dermal preparations. Drug Dev Ind Pharm 36 (2010) 688-697. https://doi.org/10.3109/03639040903449738 DOI: https://doi.org/10.3109/03639040903449738

[45] Patient Information of Sporanox (Itraconazole) Capsules. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020083s062lbl.pdf (accessed 24 June 2025)

[46] A. Dahan, J.M. Miller, A. Hoffman, G.E. Amidon, G.L. Amidon. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. Journal of Pharmaceutical Sciences 99 (2010) 2739-2749 https://doi.org/10.1002/jps.22033 DOI: https://doi.org/10.1002/jps.22033

Downloads

Published

27-08-2025

Issue

Section

Pharmaceutics

How to Cite

Comparison of lipophilic and size-exclusion membranes: creating sink conditions with cyclodextrin: Original scientific article. (2025). ADMET and DMPK, 2859. https://doi.org/10.5599/admet.2859

Funding data

Similar Articles

71-80 of 215

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)