Effect of surfactants and polymer composition on the characteristics of polyhydroxyalkanoate nanoparticles
Original scientific article
DOI:
https://doi.org/10.5599/admet.2723Keywords:
P3HB, P3HBV, polyvinyl alcohol, Tween 80, sodium deoxycholate, sodium dodecyl sulfateAbstract
Background and purpose: Polyhydroxyalkanoates (PHAs) are biodegradable polyesters of bacterial origin that are actively studied as matrices for the preparation of nanoparticulate drug delivery systems. The most significant parameters affecting PHAs nanoparticles (NPs) characteristics are polymer composition and the type of surfactant used to stabilize the emulsion during NPs preparation. However, there are only a few studies in the literature investigating the effect of these factors on the characteristics of PHA NPs. Experimental approach: Blank poly(3-hydroxybutyrate) (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P3HBV) NPs were produced and characterized in terms of their size, morphology and zeta potential. Poly(vinyl alcohol) (PVA) with various molecular weights (31-50 and 85-124 kDa), as well as Tween 20 (TW20), Tween 80 (TW80), sodium deoxycholate (SDC) and sodium dodecyl sulphate (SDS) were used as surfactants. For NPs that formed stable aqueous suspensions and had the most desirable characteristics (P3HB/PVA31-50 and P3HBV/PVA31-50), hemolytic activity and cytotoxicity to HeLa and C2C12 cells in vitro were determined. Key results: NPs of both P3HB and P3HBV obtained using PVA with the Mw of 31-50 kDa as a surfactant had regular spherical shape, uniform size distribution, average diameter of about 900 nm and zeta potential of -28.5 and -28.7 mV, respectively. PVA85-124, TW20 and TW80, as well as SDC and SDS as surfactants, did not show satisfactory results due to suspension gelation, formation of hollow NPs with irregular shape and poor resuspension after washing and freeze-drying, respectively. P3HB/PVA31-50 and P3HBV/PVA31-50 NPs did not have hemolytic activity and did not show pronounced cytotoxicity to HeLa and C2C12 cells in the concentration range from 10 to 500 μg mL-1, so these samples were regarded as safe and biocompatible. Conclusion: In this study, the effect of various non-ionic and anionic surfactants on the characteristics of P3HB and P3HBV NPs was investigated. PVA31-50 was found to be effective in producing NPs of both studied polymers with good biocompatibility and favorable characteristics, making them suitable for drug delivery applications. In contrast, other studied surfactants, i.e., PVA85-124, TW20, TW80, SDC and SDS, require further investigation. The obtained findings may promote the development of novel PHA-based nanomedicines.
Downloads
References
[1] M. Chauhan, Sonali, S. Shekhar, B. Yadav, V. Garg, R. Dutt, A.K. Mehata, P. Goswami, B. Koch, M.S. Muthu, R.P. Singh. AS1411 aptamer/RGD dual functionalized theranostic chitosan-PLGA nanoparticles for brain cancer treatment and imaging. Biomaterials Advances 160 (2024) 213833. https://doi.org/10.1016/j.bioadv.2024.213833
[2] S. Ganguly, S. Dewanjee, R. Sen, D. Chattopadhyay, S. Ganguly, R. Gaonkar, M.C. Debnath. Apigenin-loaded galactose tailored PLGA nanoparticles: A possible strategy for liver targeting to treat hepatocellular carcinoma. Colloids and Surfaces B: Biointerfaces 204 (2021) 111778. https://doi.org/10.1016/j.colsurfb.2021.111778
[3] A.A. Rouhi, A. Valizadeh, N. Sedghizadeh, L. Beba, H. Dadashi, M. Kazempour, K. Adibkia, S. Vandghanooni, M. Eskandani. Targeted therapy of gastric cancer with gingerol-loaded hyaluronic acid/PEG-coated PLGA nanoparticles: Development and physicochemical evaluation. Journal of Drug Delivery Science and Technology 97 (2024) 105734. https://doi.org/10.1016/j.jddst.2024.105734
[4] W. Mekseriwattana, A. Phungsom, K. Sawasdee, P. Wongwienkham, C. Kuhakarn, P. Chaiyen, K.P. Katewongsa. Dual Functions of Riboflavin‐functionalized Poly(lactic‐co‐glycolic acid) Nanoparticles for Enhanced Drug Delivery Efficiency and Photodynamic Therapy in Triple‐negative Breast Cancer Cells. Photochemistry and Photobiology 97 (2021) 1548-1557. https://doi.org/10.1111/php.13464
[5] Z. Du, Y. Mao, P. Zhang, J. Hu, J. Fu, Q. You, J. Yin. TPGS-Galactose-Modified Polydopamine Co-delivery Nanoparticles of Nitric Oxide Donor and Doxorubicin for Targeted Chemo-Photothermal Therapy against Drug-Resistant Hepatocellular Carcinoma. ACS Applied Materials & Interfaces 13 (2021) 35518-35532. https://doi.org/10.1021/acsami.1c09610
[6] Y.-N. Li, X. Shi, D. Sun, S. Han, Y. Zou, L. Wang, L. Yang, Y. Li, Y. Shi, J. Guo, C.M. O’Driscoll. Delivery of melarsoprol using folate-targeted PEGylated cyclodextrin-based nanoparticles for hepatocellular carcinoma. International Journal of Pharmaceutics 636 (2023) 122791. https://doi.org/10.1016/j.ijpharm.2023.122791
[7] Z. Chen, Y. Liang, X. Feng, Y. Liang, G. Shen, H. Huang, Z. Chen, J. Yu, H. Liu, T. Lin, H. Chen, D. Wu, G. Li, B. Zhao, W. Guo, Y. Hu. Vitamin-B12-conjugated PLGA-PEG nanoparticles incorporating miR-532-3p induce mitochondrial damage by targeting apoptosis repressor with caspase recruitment domain (ARC) on CD320-overexpressed gastric cancer. Materials Science and Engineering: C 120 (2021) 111722. https://doi.org/10.1016/j.msec.2020.111722
[8] J.L. Markman, A. Rekechenetskiy, E. Holler, J.Y. Ljubimova. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Advanced Drug Delivery Reviews 65 (2013) 1866-1879. https://doi.org/10.1016/j.addr.2013.09.019
[9] J. Zhang, E.I. Shishatskaya, T.G. Volova, L.F. da Silva, G.Q. Chen. Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C 86 (2018) 144-150. https://doi.org/10.1016/J.MSEC.2017.12.035
[10] K. Perveen, F. Masood, A. Hameed. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. International Journal of Biological Macromolecules 144 (2020) 259-266. https://doi.org/10.1016/j.ijbiomac.2019.12.049
[11] G. Babos, J. Rydz, M. Kawalec, M. Klim, A. Fodor-Kardos, L. Trif, T. Feczkó. Poly(3-Hydroxybutyrate)-Based Nanoparticles for Sorafenib and Doxorubicin Anticancer Drug Delivery. International Journal of Molecular Sciences 21 (2020) 7312. https://doi.org/10.3390/ijms21197312
[12] F. Masood, P. Chen, T. Yasin, N. Fatima, F. Hasan, A. Hameed. Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Materials Science and Engineering: C 33 (2013) 1054-1060. https://doi.org/10.1016/j.msec.2012.11.025
[13] C. Zhang, Z. Zhang, L. Zhao. Folate-decorated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting delivery: optimization and in vivo antitumor activity. Drug Delivery 23 (2016) 1830-1837. https://doi.org/10.3109/10717544.2015.1122675
[14] E. Kılıçay, M. Demirbilek, M. Türk, E. Güven, B. Hazer, E.B. Denkbas. Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. European Journal of Pharmaceutical Sciences 44 (2011) 310-320. https://doi.org/10.1016/j.ejps.2011.08.013
[15] S. Lipaikin, A. Dorokhin, G. Ryltseva, A. Oberenko, E. Kiselev, A. Shabanov, T. Volova, E. Shishatskaya. Spray-dried cyclophosphamide-loaded polyhydroxyalkanoate microparticles: design and characterization. ADMET and DMPK (2024). https://doi.org/10.5599/admet.2434
[16] A. Rodríguez-Contreras, C. Canal, M. Calafell-Monfort, M.-P. Ginebra, G. Julio-Moran, M.-S. Marqués-Calvo. Methods for the preparation of doxycycline-loaded phb micro- and nano-spheres. European Polymer Journal 49 (2013) 3501-3511. https://doi.org/10.1016/j.eurpolymj.2013.08.010
[17] F. Shakeri, S. Shakeri, M. Hojjatoleslami. Preparation and Characterization of Carvacrol Loaded Polyhydroxybutyrate Nanoparticles by Nanoprecipitation and Dialysis Methods. Journal of Food Science 79 (2014). https://doi.org/10.1111/1750-3841.12406
[18] Aleksei Dorokhin, Sergei Lipaikin, Galina Ryltseva, Ekaterina Shishatskaya, Sergei Kachin. Preparation and Characterization of Rifampicin-Loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Microparticles. Journal of Siberian Federal University. Chemistry 16(2) (2023) 159-167. https://elib.sfu-kras.ru/bitstream/handle/2311/150144/01_Dorokhin.pdf
[19] A. V. Murueva, A.M. Shershneva, E.I. Shishatskaya, T.G. Volova. The Use of Polymeric Microcarriers Loaded with Anti-Inflammatory Substances in the Therapy of Experimental Skin Wounds. Bulletin of Experimental Biology and Medicine 157 (2014) 597-602. https://doi.org/10.1007/s10517-014-2624-8
[20] S. Pramual, A. Assavanig, M. Bergkvist, C.A. Batt, P. Sunintaboon, K. Lirdprapamongkol, J. Svasti, N. Niamsiri. Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents. Journal of Materials Science: Materials in Medicine 27 (2016) 40. https://doi.org/10.1007/s10856-015-5655-4
[21] E. Kilicay, E. Erdal, B. Hazer, M. Türk, E.B. Denkbas. Antisense oligonucleotide delivery to cancer cell lines for the treatment of different cancer types. Artificial Cells, Nanomedicine, and Biotechnology 44 (2016) 1938-1948. https://doi.org/10.3109/21691401.2015.1115409
[22] A. Aslam, F. Masood, K. Perveen, M.R. Berger, A. Pervaiz, M. Zepp, K.D. Klika, T. Yasin, A. Hameed. Preparation, characterization and evaluation of HPβCD-PTX/PHB nanoparticles for pH-responsive, cytotoxic and apoptotic properties. International Journal of Biological Macromolecules 270 (2024) 132268. https://doi.org/10.1016/j.ijbiomac.2024.132268
[23] Q. Peng, Z.-R. Zhang, T. Gong, G.-Q. Chen, X. Sun. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials 33 (2012) 1583-1588. https://doi.org/10.1016/j.biomaterials.2011.10.072
[24] K. Chaturvedi, K. Ganguly, A.R. Kulkarni, W.E. Rudzinski, L. Krauss, M.N. Nadagouda, T.M. Aminabhavi. Oral Insulin Delivery Using Deoxycholic Acid Conjugated Pegylated Polyhydroxybutyrate Co-Polymeric Nanoparticles. Nanomedicine 10 (2015) 1569-1583. https://doi.org/10.2217/nnm.15.36
[25] I. Corrado, R. Di Girolamo, C. Regalado-González, C. Pezzella. Polyhydroxyalkanoates-Based Nanoparticles as Essential Oil Carriers. Polymers 14 (2022). https://doi.org/10.3390/polym14010166
[26] N. Sharma, P. Madan, S. Lin. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian Journal of Pharmaceutical Sciences 11 (2016) 404-416. https://doi.org/10.1016/j.ajps.2015.09.004
[27] G. Grebnev, A. Ivanov, A.V. Kabankov, M.M. Garunov, V. Rumakin, I. Borodulina. Bioresorbable membranes based on polyvinyl alcohol and fullerene. Medical News of the North Caucasus 14 (2019). https://doi.org/10.14300/mnnc.2019.14128
[28] H. Cortés, H. Hernández-Parra, S.A. Bernal-Chávez, M.L. Del Prado-Audelo, I.H. Caballero-Florán, F. V. Borbolla-Jiménez, M. González-Torres, J.J. Magaña, G. Leyva-Gómez. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. Materials 14 (2021) 3197. https://doi.org/10.3390/ma14123197
[29] F. Masood, A. Aslam, K. Perveen, M.R. Berger, (the Late) Abdul Hameed. Characterization of folic acid-grafted poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles as carriers for sustained release of epirubicin. Journal of Molecular Structure 1304 (2024) 137631. https://doi.org/10.1016/j.molstruc.2024.137631
[30] A. Aslam, M.R. Berger, I. Ullah, A. Hameed, F. Masood. Preparation and evaluation of cytotoxic potential of paclitaxel containing poly-3-hydroxybutyrate-co-3-hydroxyvalarate (PTX/PHBV) nanoparticles. Brazilian Journal of Biology 83 (2023). https://doi.org/10.1590/1519-6984.275688
[31] S.Y. Lipaikin, I.A. Yaremenko, A.O. Terent’ev, T.G. Volova, E.I. Shishatskaya. Development of Biodegradable Delivery Systems Containing Novel 1,2,4-Trioxolane Based on Bacterial Polyhydroxyalkanoates. Advances in Polymer Technology 2022 (2022) 1-14. https://doi.org/10.1155/2022/6353909
[32] L. Simonini, H. Mahmood, A. Dorigato, A. Pegoretti. Evaluation of self-healing capability of a polycaprolactone interphase in epoxy/glass composites. Composites Part A: Applied Science and Manufacturing 169 (2023) 107539. https://doi.org/10.1016/j.compositesa.2023.107539
[33] N. Ramzan, M. Azeem, K. Mahmood, S. Shah, F.R.S. Chughtai, M. Hanif, N. Ameer, Z. Bashir, F. Siddique, M. Qaisar. Cellular and Non-cellular Antioxidant Properties of Vitamin E-Loaded Metallic-Quercetin/Polycaprolactone Nanoparticles for the Treatment of Melanogenesis. AAPS PharmSciTech 24 (2023) 141. https://doi.org/10.1208/s12249-023-02588-7
[34] A.E.-S. Abdelhamid, A. El-Sayed, S.A. Swelam, A.M. Soliman, A.M. Khalil. Encapsulated polycaprolactone with triazole derivatives and selenium nanoparticles as promising antiproliferative and anticancer agents. ADMET and DMPK (2023). https://doi.org/10.5599/admet.1789
[35] M.M. Mostafa, M.M. Amin, M.Y. Zakaria, M.A. Hussein, M.M. Shamaa, S.M. Abd El-Halim. Chitosan Surface-Modified PLGA Nanoparticles Loaded with Cranberry Powder Extract as a Potential Oral Delivery Platform for Targeting Colon Cancer Cells. Pharmaceutics 15 (2023) 606. https://doi.org/10.3390/pharmaceutics15020606
[36] N.S. Irvin-Choy, K.M. Nelson, J.P. Gleghorn, E.S. Day. Delivery and short-term maternal and fetal safety of vaginally administered PEG-PLGA nanoparticles. Drug Delivery and Translational Research 13 (2023) 3003-3013. https://doi.org/10.1007/s13346-023-01369-w
[37] D. Chaudhari, K. Kuche, V. Yadav, R. Ghadi, T. Date, N. Bhargavi, S. Jain. Exploring paclitaxel-loaded adenosine-conjugated PEGylated PLGA nanoparticles for targeting triple-negative breast cancer. Drug Delivery and Translational Research 13 (2023) 1074-1087. https://doi.org/10.1007/s13346-022-01273-9
[38] T. Miyazawa, M. Itaya, G.C. Burdeos, K. Nakagawa, T. Miyazawa. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. International Journal of Nanomedicine Volume 16 (2021) 3937-3999. https://doi.org/10.2147/IJN.S298606
[39] N.A. Petushkova, A.L. Rusanov, M.A. Pyatnitskiy, O. V Larina, V.G. Zgoda, A. V Lisitsa, N.G. Luzgina. Proteomic characterization of HaCaT keratinocytes provides new insights into changes associated with SDS exposure. Biomedical Dermatology 4 (2020) 4. https://doi.org/10.1186/s41702-019-0054-y
[40] 21 C F R 172.822. 21 CFR 172.822. Sodium lauryl sulfate. Code of Federal Regulations (1977). https://www.ecfr.gov/current/title-21/section-172.822
[41] G. Sharma, Mu. Naushad, B. Thakur, A. Kumar, P. Negi, R. Saini, A. Chahal, A. Kumar, F. Stadler, U.M.H. Aqil. Sodium Dodecyl Sulphate-Supported Nanocomposite as Drug Carrier System for Controlled Delivery of Ondansetron. International Journal of Environmental Research and Public Health 15 (2018) 414. https://doi.org/10.3390/ijerph15030414
[42] I.G. Zigoneanu, C.E. Astete, C.M. Sabliov. Nanoparticles with entrapped α-tocopherol: synthesis, characterization, and controlled release. Nanotechnology 19 (2008) 105606. https://doi.org/10.1088/0957-4484/19/10/105606
[43] Q. Xu, A. Crossley, J. Czernuszka. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres. Journal of Pharmaceutical Sciences 98 (2009) 2377-2389. https://doi.org/10.1002/jps.21612
[44] J.C. Ramirez, S.E. Flores-Villaseñor, E. Vargas-Reyes, J. Herrera-Ordonez, S. Torres-Rincón, R.D. Peralta-Rodríguez. Preparation of PDLLA and PLGA nanoparticles stabilized with PVA and a PVA-SDS mixture: Studies on particle size, degradation and drug release. Journal of Drug Delivery Science and Technology 60 (2020) 101907. https://doi.org/10.1016/j.jddst.2020.101907
[45] A. Cadete, L. Figueiredo, R. Lopes, C.C.R. Calado, A.J. Almeida, L.M.D. Gonçalves. Development and characterization of a new plasmid delivery system based on chitosan-sodium deoxycholate nanoparticles. European Journal of Pharmaceutical Sciences 45 (2012) 451-458. https://doi.org/10.1016/j.ejps.2011.09.018
[46] F. Cui. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin. International Journal of Nanomedicine (2011) 3049. https://doi.org/10.2147/IJN.S26450
[47] J.-Y. Fang, T.-L. Hwang, I.A. Aljuffali, C.-F. Lin, C.-C. Chang. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles. International Journal of Nanomedicine (2015) 371. https://doi.org/10.2147/IJN.S73017
[48] Â.S. Inácio, G.N. Costa, N.S. Domingues, M.S. Santos, A.J.M. Moreno, W.L.C. Vaz, O. V Vieira. Mitochondrial Dysfunction Is the Focus of Quaternary Ammonium Surfactant Toxicity to Mammalian Epithelial Cells. Antimicrobial Agents and Chemotherapy 57 (2013) 2631-2639. https://doi.org/10.1128/AAC.02437-12
[49] R. Gossmann, K. Langer, D. Mulac. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles. PLOS ONE 10 (2015) e0127532. https://doi.org/10.1371/journal.pone.0127532
[50] A.F. Faisalina, F. Sonvico, P. Colombo, A.A. Amirul, H.A. Wahab, M.I.A. Majid. Docetaxel-Loaded Poly(3HB-co-4HB) Biodegradable Nanoparticles: Impact of Copolymer Composition. Nanomaterials 10 (2020) 2123. https://doi.org/10.3390/nano10112123
[51] A. V. Murueva, A.M. Shershneva, E.I. Shishatskaya, T.G. Volova. Characteristics of Microparticles Based on Resorbable Polyhydroxyalkanoates Loaded with Antibacterial and Cytostatic Drugs. International Journal of Molecular Sciences 24 (2023) 14983. https://doi.org/10.3390/ijms241914983
[52] P. Senthilkumar, S. S. Dawn, C. Saipriya, A. V. Samrot. Synthesis of polyhydroxybutyrate nanoparticles using surfactant (SPAN20) for hydrophobic drug delivery. Rasayan Journal of Chemistry 11 (2018) 1686-1695. https://doi.org/10.31788/RJC.2018.1144053
[53] Volova Tatyana, Shishatskaya Ekaterina. Cupriavidus eutrophus VKPM B-10646 bacteria strain - producer of polyhydroxy alkanoates and production method thereof, 2010. https://patents.google.com/patent/RU2439143C1/en
[54] T. Volova, A. Demidenko, E. Kiselev, S. Baranovskiy, E. Shishatskaya, N. Zhila. Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production. Applied Microbiology and Biotechnology 103 (2019) 225-237. https://doi.org/10.1007/s00253-018-9460-0
[55] A. Murueva, N. Zhila, A. Dudaev, E. Shishatskaya, T. Volova. Chitosan-modified ceftazidime loaded polyhydroxyalkanoates microparticles: preparation, characterization and antibacterial evaluation in vitro. ADMET and DMPK (2025) 2645. https://doi.org/10.5599/admet.2645
[56] Y.M. Jagtap, R.K. Bhujbal, A.N. Ranade, N.S. Ranpise. Effect of various polymers concentrations on physicochemical properties of floating microspheres. Indian Journal of Pharmaceutical Sciences 74 (2012) 512-20. https://doi.org/10.4103/0250-474X.110578
[57] K. Badis, H. Merine, Y. Ramli, O. Larbi, C.H. Memou. Effect of Polymers nature and Stirring Speeds on Physicochemical Properties and the Controlled Release of Allopurinol-loaded Microspheres. Journal of the Mexican Chemical Society 66 (2021). https://doi.org/10.29356/jmcs.v66i1.1583
[58] Y. Yang, Y. Ding, B. Fan, Y. Wang, Z. Mao, W. Wang, J. Wu. Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis. Journal of Controlled Release 321 (2020) 463-474. https://doi.org/10.1016/j.jconrel.2020.02.030
[59] E.F. Fernández, B. Santos-Carballal, W.-M. Weber, F.M. Goycoolea. Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line. International Journal of Pharmaceutics 502 (2016) 1-9. https://doi.org/10.1016/j.ijpharm.2016.01.083
[60] M. Szczęch, K. Szczepanowicz. Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method. Nanomaterials 10 (2020) 496. https://doi.org/10.3390/nano10030496
[61] S. Bhattacharjee. DLS and zeta potential - What they are and what they are not? Journal of Controlled Release 235 (2016) 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017
[62] D.P. Joshi, Y.L. Lan-Chun-Fung, J.G. Pritchard. Determination of poly(vinyl alcohol) via its complex with boric acid and iodine. Analytica Chimica Acta 104 (1979) 153-160. https://doi.org/10.1016/S0003-2670(01)83825-3
[63] S.K. Sahoo, J. Panyam, S. Prabha, V. Labhasetwar. Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release 82 (2002) 105-114. https://doi.org/10.1016/S0168-3659(02)00127-X
[64] Z. Shakoori, R. Pashaei-Asl, M. Pashaiasl, S. Davaran, H. Ghanbari, E. Ebrahimie, S.M. Rezayat. Biocompatibility study of P (N-isopropylacrylamide)-based nanocomposite and its cytotoxic effect on HeLa cells as a drug delivery system for Cisplatin. Journal of Drug Delivery Science and Technology 71 (2022) 103254. https://doi.org/10.1016/j.jddst.2022.103254
[65] T. Deptuła, A. Warowicka, A. Woźniak, M. Grzeszkowiak, M. Jarzębski, M. Bednarowicz, A. Patkowski, R. Słomski. Cytotoxicity of thermo-responsive polymeric nanoparticles based on N-isopropylacrylamide for potential application as a bioscaffold. Acta Biochimica Polonica 62 (2015) 311-316. https://doi.org/10.18388/abp.2015_1007
[66] S. Moradhaseli, A. Zare Mirakabadi, A. Sarzaeem, M. Kamalzadeh, R. Haji Hosseini. Cytotoxicity of ICD-85 NPs on Human Cervical Carcinoma HeLa Cells through Caspase-8 Mediated Pathway. Iranian Journal of Pharmaceutical Research : IJPR 12 (2013) 155-63. https://pmc.ncbi.nlm.nih.gov/articles/PMC3813208
[67] F. Kordi, A.K. Zak, M. Darroudi, M.H. Saedabadi. Synthesis and characterizations of Ag-decorated graphene oxide nanosheets and their cytotoxicity studies. Chemical Papers 73 (2019) 1945-1952. https://doi.org/10.1007/s11696-019-00747-4
[68] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona. Fiji: an open-source platform for biological-image analysis. Nature Methods 9 (2012) 676-682. https://doi.org/10.1038/nmeth.2019
[69] B. Shkodra, C. Grune, A. Traeger, A. Vollrath, S. Schubert, D. Fischer, U.S. Schubert. Effect of surfactant on the size and stability of PLGA nanoparticles encapsulating a protein kinase C inhibitor. International Journal of Pharmaceutics 566 (2019) 756-764. https://doi.org/10.1016/j.ijpharm.2019.05.072
[70] F. Boury, Tz. Ivanova, I. Panaı̈otov, J.E. Proust, A. Bois, J. Richou. Dynamic Properties of Poly(DL-lactide) and Polyvinyl Alcohol Monolayers at the Air/Water and Dichloromethane/Water Interfaces. Journal of Colloid and Interface Science 169 (1995) 380-392. https://doi.org/10.1006/jcis.1995.1047
[71] H. Murakami, Y. Kawashima, T. Niwa, T. Hino, H. Takeuchi, M. Kobayashi. Influence of the degrees of hydrolyzation and polymerization of poly(vinylalcohol) on the preparation and properties of poly(dl-lactide-co-glycolide) nanoparticle. International Journal of Pharmaceutics 149 (1997) 43-49. https://doi.org/10.1016/S0378-5173(96)04854-5
[72] M. Azizi, F. Farahmandghavi, M. Joghataei, M. Zandi, M. Imani, M. Bakhtiary, F.A. Dorkoosh, F. Ghazizadeh. Fabrication of protein-loaded PLGA nanoparticles: effect of selected formulation variables on particle size and release profile. Journal of Polymer Research 20 (2013) 110. https://doi.org/10.1007/s10965-013-0110-z
[73] C.Y. Tham, Z.A.A. Hamid, I. Hanafi, Z. Ahmad. Poly (Vinyl Alcohol) in Fabrication of PLA Micro- and Nanoparticles Using Emulsion and Solvent Evaporation Technique. Advanced Materials Research 1024 (2014) 296-299. https://doi.org/10.4028/www.scientific.net/AMR.1024.296
[74] S. Pachiyappan, D. Shanmuganatham Selvanantham, S.S. Kuppa, S. Chandrasekaran, A.V. Samrot. Surfactant‐mediated synthesis of polyhydroxybutyrate (PHB) nanoparticles for sustained drug delivery. IET Nanobiotechnology 13 (2019) 416-427. https://doi.org/10.1049/iet-nbt.2018.5053
[75] C. Prieto, L. Calvo. Performance of the Biocompatible Surfactant Tween 80, for the Formation of Microemulsions Suitable for New Pharmaceutical Processing. Journal of Applied Chemistry 2013 (2013) 1-10. https://doi.org/10.1155/2013/930356
[76] R. Davies, D.E. Graham, B. Vincent. Water-cyclohexane-“Span 80”-“Tween 80” systems: Solution properties and water/oil emulsion formation. Journal of Colloid and Interface Science 116 (1987) 88-99. https://doi.org/10.1016/0021-9797(87)90101-9
[77] O. Esim, N.K. Bakirhan, M. Sarper, A. Savaser, S.A. Ozkan, Y. Ozkan. Influence of emulsifiers on the formation and in vitro anticancer activity of epirubicin loaded PLGA nanoparticles. Journal of Drug Delivery Science and Technology 60 (2020) 102027. https://doi.org/10.1016/j.jddst.2020.102027
[78] A. Gagliardi, D. Paolino, M. Iannone, E. Palma, M. Fresta, D. Cosco. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system. International Journal of Nanomedicine 13 (2018) 601-614. https://doi.org/10.2147/IJN.S156930
[79] E.L. Vallorz, D. Encinas-Basurto, R.G. Schnellmann, H.M. Mansour. Design, Development, Physicochemical Characterization, and In Vitro Drug Release of Formoterol PEGylated PLGA Polymeric Nanoparticles. Pharmaceutics 14 (2022) 638. https://doi.org/10.3390/pharmaceutics14030638
[80] E. Sadri, S. Khoee, S. Moayeri, B. Haji Ali, V. Pirhajati Mahabadi, S. Shirvalilou, S. Khoei. Enhanced anti-tumor activity of transferrin/folate dual-targeting magnetic nanoparticles using chemo-thermo therapy on retinoblastoma cancer cells Y79. Scientific Reports 13 (2023) 22358. https://doi.org/10.1038/s41598-023-49171-5
[81] S. Özçelik, B. Yalçın, L. Arda, H. Santos, R. Sáez-Puche, L.A. Angurel, G.F. de la Fuente, B. Özçelik. Structure, magnetic, photocatalytic and blood compatibility studies of nickel nanoferrites prepared by laser ablation technique in distilled water. Journal of Alloys and Compounds 854 (2021) 157279. https://doi.org/10.1016/j.jallcom.2020.157279
[82] C. Chen, Y.C. Cheng, C.H. Yu, S.W. Chan, M.K. Cheung, P.H.F. Yu. In vitro cytotoxicity, hemolysis assay, and biodegradation behavior of biodegradable poly(3‐hydroxybutyrate)-poly(ethylene glycol)-poly(3‐hydroxybutyrate) nanoparticles as potential drug carriers. Journal of Biomedical Materials Research Part A 87A (2008) 290-298. https://doi.org/10.1002/jbm.a.31719
[83] T. Yue, H. Zhou, H. Sun, S. Li, X. Zhang, D. Cao, X. Yi, B. Yan. Why are nanoparticles trapped at cell junctions when the cell density is high? Nanoscale 11 (2019) 6602-6609. https://doi.org/10.1039/C9NR01024F
[84] J. Hu, M. Wang, X. Xiao, B. Zhang, Q. Xie, X. Xu, S. Li, Z. Zheng, D. Wei, X. Zhang. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale 12 (2020) 10799-10808. https://doi.org/10.1039/D0NR01308K
[85] A.M. Silva, H.L. Alvarado, G. Abrego, C. Martins-Gomes, M.L. Garduño-Ramirez, M.L. García, A.C. Calpena, E.B. Souto. In Vitro Cytotoxicity of Oleanolic/Ursolic Acids-Loaded in PLGA Nanoparticles in Different Cell Lines. Pharmaceutics 11 (2019) 362. https://doi.org/10.3390/pharmaceutics11080362
[86] S. Xiong, S. George, H. Yu, R. Damoiseaux, B. France, K.W. Ng, J.S.-C. Loo. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO2) nanoparticles. Archives of Toxicology 87 (2013) 1075-1086. https://doi.org/10.1007/s00204-012-0938-8
Published
Issue
Section
License
Copyright (c) 2025 Aleksei Dorokhin, Sergei Lipaikin, Galina Ryltseva, Alexander Shabanov, Kristina Sapozhnikova, Tatiana Volova, Sergei Kachin, Ekaterina Shishatskaya

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Funding data
-
Ministry of Science and Higher Education of the Russian Federation
Grant numbers FWES-2021–0025