Use of Azospirillum baldaniorum cells in quercetin detection

Authors

  • Matvey Kanevskiy Chernyshevsky Saratov State University, Saratov 410012, Russia https://orcid.org/0000-0002-5932-6748
  • Irina Kosheleva Chernyshevsky Saratov State University, Saratov 410012, Russia https://orcid.org/0000-0003-1992-5305
  • Vladislav Menukhov Chernyshevsky Saratov State University, Saratov 410012, Russia https://orcid.org/0000-0002-8432-0890
  • Elizaveta Zhdanova Chernyshevsky Saratov State University, Saratov 410012, Russia https://orcid.org/0000-0002-2390-8463
  • Svetlana Borisova Chernyshevsky Saratov State University, Saratov 410012, Russia
  • Gennadiy Burygin Chernyshevsky Saratov State University, Saratov 410012, Russia and Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Center of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia https://orcid.org/0000-0001-8031-9641
  • Svetlana Konnova Chernyshevsky Saratov State University, Saratov 410012, Russia and Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Center of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia https://orcid.org/0000-0002-9607-8173
  • Viktor Bunin EloSystems GbR, Germany https://orcid.org/0000-0001-7685-0931
  • Olga Guliy Chernyshevsky Saratov State University, Saratov 410012, Russia https://orcid.org/0000-0002-0541-0020

DOI:

https://doi.org/10.5599/admet.1661

Keywords:

Flavonoids, quercetin, Azospirillum, electro-optical analysis, impedance
Graphical Abstract

Abstract

The possibility of detection and determination of flavonoids by using microbial cells was shown for the first time using the quercetin - Azospirillum baldaniorum Sp245 model system. The activity of the flavonoids quercetin, rutin and naringenin toward A. baldaniorum Sp245 was evaluated. It was found that when the quercetin concentration ranged from 50 to 100 µM, the number of bacterial cells decreased. Rutin and naringenin did not affect bacterial numbers. Quercetin at 100 μM increased bacterial impedance by 60 %. Under the effect of quercetin, the magnitude of the electro-optical signal from cells decreased by 75 %, as compared with the no-quercetin control. Our data show the possibility of developing sensor-based systems for the detection and determination of flavonoids.

Downloads

Download data is not yet available.

References

A.N. Panche, A.D. Diwan, S.R. Chandra. Flavonoids. Journal of Nutritional Science 5 (2016), e47. https://doi.org/10.1017/jns.2016.41

L.E. Alcaraz, S.E. Blanco, O.N. Puig, F. Tomas, F.H. Ferretti. Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. Journal of Theoretical Biology 205 (2000) 231-240. https://doi.org/10.1006/jtbi.2000.2062

K.C. Murthy, J. Kim, A. Vikram, B.S. Patil. Differential inhibition of human colon cancer cells by structurally similar flavonoids of citrus. Food Chemistry 132 (2012) 27-34. https://doi.org/10.1016/j.foodchem.2011.10.014

A.K. Verma, H. Singh, M. Satyanarayana, S.P. Srivastava, P. Tiwari, A.B. Singh, A.K. Dwivedi, S.K. Singh, M. Srivastava, C. Nath, R. Raghubir, A.K. Srivastava, R. Pratap. Flavone-based novel antidiabetic and antidyslipidemic agents. Journal of Medicinal Chemistry 55 (2012) 4551-4567. https://doi.org/10.1021/jm201107g

M. Chen, T. Wang, Z.-Z.Jiang, C. Shan, H. Wang, M.-J.Wu, S. Zhang, Y. Zhang, L.-Y. Zhang. Anti-inflammatory and hepatoprotective effects of total flavonoid C-glycosides from Abrusmollis extracts. Chinese Journal of Natural Medicines 12 (2014) 590-598. https://doi.org/10.1016/S1875-5364(14)60090-X

J. Zhang, Y. Wu, X. Zhao, F. Luo, X. Li, H. Zhu, C. Sun, K. Chen. Chemopreventive effect of flavonoids from Ougan (Citrus reticulata cv. Suavissima) fruit against cancer cell proliferation and migration. Journal of Functional Foods 10 (2014) 511-519. https://doi.org/10.1016/j.jff.2014.08.006

T.Y. Wang, Q. Li, K.S. Bi. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian journal of pharmaceutical sciences 13 (2018) 12-23. https://doi.org/10.1016/j.ajps.2017.08.004

European Pharmacopoeia. – 10th ed. – Sup. 10. – Strasbourg: European Department for the Quality of Medicines, 2020 (ISBN: 978-3-7692-7453-0)

S.A. Baba, S.A. Malik. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii blume. Journal of Taibah University for Science 9 (2015) 449-454. https://doi.org/10.1016/j.jtusci.2014.11.001

S.G. Dmitrienko, V.A. Kudrinskaya, V.V. Apyari. Methods of extraction, preconcentration, and determination of quercetin. Journal of Analytical Chemistry 67 (2012) 299-311. https://doi.org/10.1134/S106193481204003X

K. Csepregi, M. Kocsis, É. Hideg. On the spectrophotometric determination of total phenolic and flavonoid contents. Acta Biologica Hungarica 64 (2013) 500-509. https://doi.org/10.1556/abiol.64.2013.4.10

L.A.L. da Silva, B.R. Pezzini, L. Soares. Spectrophotometric determination of the total flavonoid content in Ocimumbasilicum L. (Lamiaceae) leaves. Pharmacognosy Magazine 11 (2015) 96. https://doi.org/10.4103/0973-1296.149721

O.V. Trineeva. Development of theoretical approaches to the determination of the main groups of biologically active substances of medicinal plant materials by TLC. Development and Registration of Medicines 10 (2021) 69-79. (in Russian). https://doi.org/10.333 80/2305-2066-2021-10-2-69-79

V.S. Saraswathi, D. Saravanan, K. Santhakumar. Isolation of quercetin from the methanolic extract of Lagerstroemia speciosa by HPLC technique, its cytotoxicity against MCF-7 cells and photocatalytic activity. Journal of Photochemistry and Photobiology B: Biology 171 (2017) 20-26. https://doi.org/10.1016/j.jphotobiol.2017.04.031

M. Tzanova, P. Peeva. Rapid HPLC method for simultaneous quantification of trans-resveratrol and quercetin in the skin of red grapes. Food analytical methods 11 (2018) 514-521. https://doi.org/10.1007/s12161-017-1022-z

S. Bajkacz, I. Baranowska, B. Buszewski, B. Kowalski, M. Ligor. Determination of flavonoids and phenolic acids in plant materials using SLE-SPE-UHPLC-MS/MS method. Food Analytical Methods 11 (2018) 3563-3575. https://doi.org/10.1007/s12161-018-1332-9

H. Yin, J. Ma, J. Han, M. Li, J. Shang. Pharmacokinetic comparison of quercetin, isoquercitrin, and quercetin-3-O-β-D-glucuronide in rats by HPLC-MS. PeerJ 7 (2019) e6665. https://doi.org/10.7717/peerj.6665

A.F. Memon, A.R. Solangi, S.Q. Memon, A. Mallah, N. Memon, A.A. Memon. Simultaneous deter-mi¬nation of quercetin, rutin, naringin, and naringenin in different fruits by capillary zone electro-phoresis. Food Analytical Methods 10 (2017) 83-91. https://doi.org/10.1007/s12161-016-0552-0

S. Zhang, S. Dong, L. Chi, P. He, Q. Wang, Y. Fang. Simultaneous determination of flavonoids in chrysanthemum by capillary zone electrophoresis with running buffer modifiers. Talanta 76 (2008) 780-784. https://doi.org/10.1016/j.talanta.2008.04.025

S. Siedler, S.G. Stahlhut, S. Malla, J. Maury, A.R. Neves. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic Engineering 21 (2014) 2-8. https://doi.org/10.1016/j.ymben.2013.10.011

N.S. Velichko, O.I. Guliy, M.V. Kanevsky, M.A. Kupryashina, Y.P. Fedonenko. Whole-cell electric sensor for determination of sodium dodecyl sulfate. World Journal of Microbiology and Biotechnology 38 (2022) 1-13. https://doi.org/10.1007/s11274-022-03309-1

S.E. Fischer, M.J. Miguel, G.B. Morri. Effect of root exudates on the polysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress. FEMS Microbiology Letters 219 (2003) 53-62. https://doi.org/10.1016/S0378-1097(02)01194-1

M.V. Kanevskiy, S.A. Konnova, A.S. Boyko, Y.P. Fedonenko, E.N. Sigida, V.V. Ignatov. Effect of flavonoids on the composition of surface glycopolymers of Azospirillum lipoferum Sp59b. Microbiology 83 (2014) 15-22. https://doi.org/10.1134/S0026261714020106

V.L. Baldani, J.I. Baldani, J. Döbereiner. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Canadian Journal of Microbiology 29 (1983) 924-929. https://doi.org/10.1139/m83-148

N.dos S. Ferreira, F.H. Sant’Anna, V.M.Reis, A.Ambrosini, C.G. Volpiano, M. Rothballer, S. Schwab, V.A. Baura, E. Balsanelli, F.de O. Pedrosa, L.M.P. Passaglia, E.M.de Souza, A. Hartmann, F. Cassan, J.E. Zill. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. Nov. International Journal of Systematic and Evolutionary Microbiology 70 (2020) 6203-6212. https://doi.org/10.1099/ijsem.0.004517

S.A. Konnova, O.E. Makarov, I.M. Skvortsov, V.V. Ignatov. Isolation, fractionation and some properties of polysaccharides produced in a bound form by Azospirillum brasilense and their possible involvement in Azospirillum-wheat root interactions. FEMS Microbiology Letters 118 (1994) 93-99. https://doi.org/10.1111/j.1574-6968.1994.tb06809.x

G.A. O'Toole, R. Kolter. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular microbiology 28 (1998) 449-461. https://doi.org/10.1046/j.1365-2958.1998.00797.x

O.I. Guliy, N.S. Velichko, Y.P. Fedonenko, V.D. Bunin. Use of an electro-optical sensor and phage antibodies for immunodetection of Herbaspirillum. Talanta. 202 (2019) 362-368. https://doi.org/10.1016/j.talanta.2019.04.086

O.I. Guliy, V.D. Bunin. Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery. Springer, Singapore, 2020 https://doi.org/10.1007/978-981-15-4790-4_11

M.V. Kanevskiy, V.V. Shardin, V.D. Bunin, O.I. Guliy. Electrophysical sensor systems for in vitro monitoring of bacterial metabolic activity. Biosensors and Bioelectronics: X. 11 (2022) 100179. https://doi.org/10.1016/j.biosx.2022.100179

M. Kanevskiy, E. Borisova, I. Mironova, S. Konnova, A. Galitskaya, A. Khorovodov, I. Agranovich, P. Pavlova, O. Semyachkina-Glushkovskaya. Stress-induced gastric adenocarcinoma: fluorescent and electrical measurements. Journal of Optoelectronics and Advanced Materials 22 (2020) 316-322. https://joam.inoe.ro/articles/stress-induced-gastric-adenocarcinoma-fluorescent-and-electrical-mea¬surements/

M. Del Gallo, A. Haegi. Characterization and quantification of exocellular polysaccharides in Azospi¬ri-llum brasilense and Azospirillum lipoferum. Symbiosis 9 (1990) 155-161. (https://dalspace.library.dal.ca/bitstream/handle/10222/77099/VOLUME%209-NUMBERS%201-3-1990-PAGE%20155.pdf?sequence=1)

P. Gerhardt. Manual of methods for general bacteriology, American Society for Microbiology 1981. p. 524. (ISBN‎ 0914826298)

J.S. Sawardeker, J.H. Sloneker, A. Jeanes. Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Analytical Chemistry 37 (1965) 1602-1604. https://doi.org/10.1021/ac60231a048

O.I. Gulii, L.Y. Matora, G.L. Burygin, L.A. Dykman, V.V. Ignatov, O.V. Ignatov. Electro-optical properties of the microbial suspensions during a cell’s interaction with the antibodies of a different specificity. Applied Biochemistry and Microbiology 46 (2010) 61-64. https://doi.org/10.1134/S0003683810010102

M.A. Matus-Cádiz, T.E. Daskalchuk, B. Verma, D. Puttick, R.N. Chibbar, G.R. Gray, C.E. Perron, R.T. Tyler, P. Hucl. Phenolic compounds contribute to dark bran pigmentation in hard white wheat. Journal of Agricultural and Food Chemistry 56 (2008) 1644-1653.https://doi.org/10.1021/jf072970c

S. Cesco, T. Mimmo, G. Tonon, N. Tomasi, R. Pinton, R. Terzano, G. Neumann, L. Weisskopf, G. Renella, L. Landi, P. Nannipiery. Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. Biology and Fertility of Soils 48 (2012) 123-149. https://doi.org/10.1007/s00374-011-0653-2

P.H. Bais, T.L. Weir, L.G. Perry, S. Gilroy, J.M. Vivanco. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57 (2006) 233-66. https://doi.org/10.1146/annurev.arplant.57.032905.105159

C.H. Kong, H. Zhao, X.H. Xu, P. Wang, Y. Gu. ActivityandAllelopathyofsoilof flavones O-glycosides from rice. Journal of Agricultural and Food Chemistry 55 (2007) 6007-6012. https://doi.org/10.1021/jf0703912

S. Hassan, U. Mathesius. The role of flavonoids in root–rhizospheresignalling: opportunities and challenges for improving plant–microbe interactions. Journal of Experimental Botany 63 (2012) 3429-3444. https://doi.org/10.1093/jxb/err430

W.L. Johnson, D.C. France, N.S. Rentz, W.T. Cordell, F.L. Walls. Sensing bacterial vibrations and early response to antibiotics with phase noise of a resonant crystal. Scientific Reports 7 (2017) 1-12. https://doi.org/10.1038/s41598-017-12063-6

O.I. Guliy, V.D. Bunin, V.I. Korzhenevich, O.V. Ignatov. Electro-optical assays for immunoindication of microbial cells. Current Immunology Reviews 13 (2017) 153-162. https://doi.org/10.2174/1573395513666171010142039

A.M. James. The electrical properties and topochemistry of bacterial cells. Advances in Colloid and Interface Science 15 (1982) 171-221. https://doi.org/10.1016/0001-8686(82)80001-8

M.V. Kanevsky, V.O. Menukhov, I.S. Kosheleva, A.Yu. Kostritsky, I.V. Kanevskaya, S.A. Konnova. Changes in the physicochemical and cultural properties of the bacteria Azospirillum baldaniorum Sp245 under the influence of some synthetic coumarins. Izvestiya of Saratov University. Chemistry. Biology. Ecology 22 (2022) 215-225. (in Russian). https://doi.org/10.18500/1816-9775-2022-22-2-215-225

S.S. Yevstigneyeva, E.N. Sigida, Y.P. Fedonenko, S.A. Konnova, V.V. Ignatov. Structural properties of capsular and O-specific polysaccharides of Azospirillum brasilense Sp245 under varying cultivation conditions. Microbiology 85 (2016) 664-671. https://doi.org/10.1134/S0026261716060096

A.A. Maltseva, O. V. Trineeva, A. S. Chistyakova, T. A. Brezhneva, A. I. Slivkin, A. A. Sorokina. Thin-layer chromatography in the analysis of flavonoids of plant objects. Pharmacy 1 (2013) 13-16. (in Russian) (https://www.elibrary.ru/item.asp?id=18891084)

S.L. Hsiu, C.W. Tsao, Y.C. Tsai, H.J. Ho, P.D.L. Chao. Determinations of morin, quercetin and their conjugate metabolites in serum. Biological and Pharmaceutical Bulletin 24 (2001) 967-969. https://doi.org/10.1248/bpb.24.967

K. Ishii, T. uruta, Y. Kasuya. High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection. Journal of Chromatography B. 794 (2003) 49-56. https://doi.org/10.1016/S1570-0232(03)00398-2

E.J. Lee, K.S. Yoo, B.S. Patil. Development of a rapid HPLC‐UV method for simultaneous quantification of protodioscin and rutin in white and green asparagus spears. Journal of food science 75 (2010) 703-709. https://doi.org/10.1111/j.1750-3841.2010.01824.x

N.B. Sarikahya, A.C. Goren, S. Kirmizigul. Simultaneous determination of several flavonoids and phenolic compounds in nineteen different Cephalaria species by HPLC-MS/MS. Journal of Pharmaceutical and Biomedical Analysis 173 (2019) 120-125. https://doi.org/10.1016/j.jpba.2019.05.019

Downloads

Published

21-03-2023 — Updated on 04-06-2023

How to Cite

Kanevskiy , M., Kosheleva, I., Menukhov, V., Zhdanova, E., Borisova, S., Burygin , G., Konnova , S., Bunin, V., & Guliy, O. (2023). Use of Azospirillum baldaniorum cells in quercetin detection. ADMET and DMPK, 11(2), 277–291. https://doi.org/10.5599/admet.1661

Issue

Section

Original Scientific Articles

Funding data

Most read articles by the same author(s)