Chitosan-modified ceftazidime loaded polyhydroxyalkanoates microparticles: preparation, characterization and antibacterial evaluation in vitro

Original scientific article

Authors

  • Anastasiya Murueva Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia and Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia https://orcid.org/0009-0006-5423-6002
  • Natalia Zhila Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia and Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia https://orcid.org/0000-0002-6256-0025
  • Alexey Dudaev Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia and Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia https://orcid.org/0000-0003-4873-126X
  • Ekaterina Shishatskaya Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia and Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia https://orcid.org/0000-0001-7967-243X
  • Tatiana Volova Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia and Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia https://orcid.org/0000-0001-9392-156X

DOI:

https://doi.org/10.5599/admet.2645

Keywords:

degradable polyhydroxyalkanoates, P(3HB), copolymer P(3HB-3HV-3HHх);, solvent evaporation, structure and properties, ; antibacterial drug, release kinetics, hemolysis;, keratinocyte proliferation

Abstract

Background and purpose: The use of drug delivery systems to enhance the efficacy of existing antimicrobial drugs is one of the promising approaches to combat bacterial resistance. The simultaneous presence of a polycationic biopolymer (chitosan) and an antibacterial drug (ceftazidime) in polyhydroxyalkanoates microparticles is more effective since it allows such carriers to have a more pronounced therapeutic effect. In this study, chitosan-modified ceftazidime-loaded poly(3-hydroxybutyrate-3-hydroxyvalerate-3-hydroxy-hexanoate) (P(3HB-3HV-3HHх)) microparticles were prepared and investigated as a drug delivery system. Experimental approach: The obtained microparticles were characterized in terms of their particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency, drug release studies in vitro, cytotoxicity and antibacterial properties in cell cultures. Key results: The microparticles had spherical shapes with diameters from 0.6 to 1.6 µm. The constructed chitosan-modified ceftazidime-loaded microparticles are a depot form of drug, the release of which in vitro is realized for a long time, without burst releases, corresponds to Korsmeyer-Peppas and Higuchi models. In vitro cell viability and proliferation studies on designed microparticles investigated using HaCaT (human keratinocyte skin cell lines) showed good cell proliferation. The hemolytic activity of chitosan-modified P(3HB- 3HV-3HHх) microparticles evaluated by hemolysis assay demonstrated good blood compatibility. Chitosan-modified microparticles enhanced the antibacterial activity of ceftazidime, being effective against E. coli and St. aureus. Conclusion: Thus, the obtained drug delivery systems based on PHAs and chitosan in the form of microparticles can be promising means in treating infectious skin diseases for topical use.

Downloads

Download data is not yet available.

References

M.H. Xiong, Y. Bao, X.Z. Yang, Y.H. Zhu, J. Wang. Delivery of antibiotics with polymeric particles. Advanced Drug Delivery Reviews 78 (2014) 63–76. https://doi.org/10.1016/j.addr.2014.02.002.

M.A. Beach, U. Nayanathara, Y. Gao, C. Zhang, Y. Xiong, Y. Wang, G.K. Such. Polymeric nanoparticles for drug delivery. Chemical Reviews 124 (2024) 5505-5616. https://doi.org/10.1021/acs.chemrev.3c00705.

WHO, https://www.who.int/ (24.09.24).

N. Osman, N. Devnarain, C.A. Omolo, V. Fasiku, Y. Jaglal, T. Govender. Surface modification of nano-drug delivery systems for enhancing antibiotic delivery and activity. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 14 (2022) e1758. https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wnan.1758.

A.B. Engin, A. Engin. Nanoantibiotics: A novel rational approach to antibiotic resistant infections. Current Drug Metabolism 20 (2019) 720-741. https://doi.org/10.2174/1389200220666190806142835.

M. Skwarczynski, S. Bashiri, Y. Yuan, Z.M. Ziora, O. Nabil, K. Masuda, I. Toth. Antimicrobial activity enhancers: Towards smart delivery of antimicrobial agents. Antibiotics 11 (2022) 412. https://doi.org/10.3390/antibiotics11030412.

M.H. Xiong, Y. Bao, X.Z. Yang, Y.H. Zhu, J. Wang. Delivery of antibiotics with polymeric particles. Advanced Drug Delivery Reviews 78 (2014) 63-76. https://doi.org/10.1016/j.addr.2014.02.002.

S. Ladhari, N.N. Vu, C. Boisvert, A. Saidi, P. Nguyen-Tri. Recent development of polyhydroxyalkanoates (PHAs)-based materials for antibacterial applications: A review. ACS Applied Bio Materials 6 (2023) 1398-1430. https://doi.org/10.1021/acsabm.3c00078.

H.L. Loo, B.H. Goh, L.H. Lee, L.H. Chuah. Application of chitosan-based nanoparticles in skin wound healing. Asian Journal of Pharmaceutical Sciences 17 (2022) 299-332. https://doi.org/10.1016/j.ajps.2022.04.001.

B. Luciano, Polyhydroxyalkanoates Based systems: the future of drug delivery and tissue engineering devices, in Bio-Based Nanomaterials: Synthesis Protocols, Mechanisms and Applications, A.K. Mishra, C.M. Hussain, Eds., Elsevier, Amsterdam, Netherlands, 2022, p. 306. https://doi.org/10.1016/B978-0-323-85148-0.00004-X.

B. Dalton, P. Bhagabati, J. De Micco, R.B. Padamati, K. O’Connor. A review on biological synthesis of the biodegradable polymers polyhydroxyalkanoates and the development of multiple applications. Catalysts 12 (2022) 319. https://doi.org/10.3390/catal12030319.

A.M. Yousefi, G.E. Wnek. Poly (hydroxyalkanoates): Emerging biopolymers in biomedical fields and packaging industries for a circular economy. Biomedical Materials and Devices 3 (2025) 19-24. https://doi.org/10.1007/s44174-024-00166-4.

Y. Zhuikova, V. Zhuikov, V. Varlamov. Biocomposite materials based on poly (3-hydroxybutyrate) and chitosan: A review. Polymers 14 (2022) 5549. https://doi.org/10.3390/polym14245549.

Z.A. Raza, S. Khalil, S. Abid. Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications. International Journal of Biological Macromolecules 160 (2020) 77-100. https://doi.org/10.1016/j.ijbiomac.2020.05.114.

R. Turco, G. Santagata, I. Corrado, C. Pezzella, M. Di Serio. In vivo and post-synthesis strategies to enhance the properties of PHB-based materials: A Review. Frontiers in Bioengineering and Biotechnology 8 (2020) 619266. https://doi.org/10.3389/fbioe.2020.619266.

S.M. Ahsan, M. Thomas, K.K. Reddy, S.G. Sooraparaju, A. Asthana, I. Bhatnagar. Chitosan as biomaterial in drug delivery and tissue engineering. International Journal of Biological Macromolecules 110 (2018) 97-109. https://doi.org/10.1016/j.ijbiomac.2017.08.140.

S. Manna, A. Seth, P. Gupta, G. Nandi, R. Dutta, S. Jana, S. Jana. Chitosan derivatives as carriers for drug delivery and biomedical applications. ACS Biomaterials Science and Engineering 9 (2023) 2181-2202. https://doi.org/10.1021/acsbiomaterials.2c01297.

B. Lu, X. Lv, Y. Le. Chitosan-modified PLGA nanoparticles for control-released drug delivery. Polymers 11 (2019) 304. https://doi.org/10.3390/polym11020304.

A.E. Yassin, A.M. Albekairy, M.E. Omer, A.A. lmutairi, Y. Alotaibi, S. Althuwaini, O.A. Alaql, S.S. Almozaai, N.M. Almutiri, W. Alluhaim, R.R. Alzahrani, A.M. Alterawi, M.A. Halwani. Chitosan-coated azithromycin/ciprofloxacin-loaded polycaprolactone nanoparticles: A characterization and potency study. Nanotechnology, Science and Applications 16 (2023) 59-72. https://doi.org/10.2147/NSA.S438484.

M.G. Arafaa, H.A. Mousac, N.N. Afifid. Preparation of PLGA-chitosan based nanocarriers for enhancing antibacterial effect of ciprofloxacin in root canal infection. Drug Delivery 27 (2020) 26-39. https://doi.org/10.1080/10717544.2019.1701140.

W. Li, N. Cicek, D.B. Levin, S. Logsetty, S. Liu. Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing applications. Journal of Biomaterials Science, Polymer Edition 31 (2020) 394-406. https://doi.org/10.1080/09205063.2019.1693882.

J.R. Xavier, S.T. Babusha, J. George, K.V. Ramana. Material properties and antimicrobial activity of polyhydroxybutyrate (PHB) films incorporated with vanillin. Applied Biochemistry and Biotechnology 176 (2015) 1498-1510. https://doi.org/10.1007/s12010-015-1660-9.

G.S. Kiran, S.A. Jackson, S. Priyadharsini, A.D.W. Dobson, J. Selvin. Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilmforming multi drug resistant Staphylococcus aureus. Scientific Reports 7 (2017) 9167. https://doi.org/10.1038/s41598-017-08816-y.

P. Basnett, E. Marcello, B. Lukasiewicz, R. Nigmatullin, A. Paxinou, M.H. Ahmad, B. Gurumayum, I. Roy. Antimicrobial materials with lime oil and a poly(3-hydroxyalkanoate) produced via valorisation of sugar cane molasses. Journal of Functional Biomaterials 11 (2020) 24. https://doi.org/10.3390/jfb11020024.

O. Gherasim, A.M. Grumezescu, A. Ficai, V. Grumezescu, A.M. Holban, B. Gălățeanu, A. Hudiță. Composite P (3HB-3HV)-CS spheres for enhanced antibiotic efficiency. Polymers 13 (2021) 989. https://doi.org/10.3390/polym13060989.

G.C. Bazzo, E. Lemos-Senna, A.T.N. Pires. Poly (3-hydroxybutyrate)/chitosan/ketoprofen or piroxicam composite microparticles: preparation and controlled drug release evaluation. Carbohydrate Polymers 77 (2009) 839-844. https://doi.org/10.1016/j.carbpol.2009.03.006.

D. Silvestri, S. Wacławek, B. Sobel, R. Torres-Mendieta, V. Novotný, N.H. Nguyen, R.S. Varma. A poly (3-hydroxybutyrate) - chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chemistry 20 (2018) 4975-4982. https://doi.org/10.1039/C8GC02495B.

N. Zhila, G. Kalacheva, T. Volova. Fatty acid composition and polyhydroxyalkanoates production by Cupriavidus eutrophus B-10646 cells grown on different carbon sources. Process Biochemistry 50 (2015) 69-78. http://dx.doi.org/10.1016/j.procbio.2014.10.018.

T. Volova, K. Sapozhnikova, N. Zhila. Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils. International Journal of Biological Macromolecules 164 (2020) 121-130. https://doi.org/10.1016/j.ijbiomac.2020.07.095.

A.V. Murueva, A.M. Shershneva, K.V. Abanina, S.V. Prudnikova, E.I. Shishatskaya. Development and characterization of ceftriaxone-loaded P3HB-based microparticles for drug delivery. Drying Technology 37 (2019) 1131-1142. https://doi.org/10.1080/07373937.2018.1487451.

S. Dash, P.N. Murthy, L. Nath, P. Chowdhury. Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica 67 (2010) 217-223. https://www.ptfarm.pl/pub/File/Acta_Poloniae/2010/3/217.pdf

S.P. Mohandas, L. Balan, J. Gopi, B.S. Anoop, R. Philip, S.S. Cubelio, I.B. Singh. Biocompatibility of polyhydroxybutyrate-co-hydroxyvalerate films generated from Bacillus cereus MCCB 281 for medical applications. International Journal of Biological Macromolecules 176 (2021) 244-252. https://doi.org/10.1016/j.ijbiomac.2021.02.006.

EN ISO 10993-4: Biological Evaluation of Medical Devices - Part 4: Selection of Tests for Interactions with Blood, IDT (2017).

S.J. Cavalieri, Manual of Antimicrobial Susceptibility Testing, American Society for Microbiology, Washington, USA, 2009, p. 236. ISBN 1-55581-349-6.

A.V. Murueva, A.M. Shershneva, E.I. Shishatskaya, T.G. Volova. Characteristics of microparticles based on resorbable polyhydroxyalkanoates loaded with antibacterial and cytostatic drugs. International Journal of Molecular Sciences 24 (2023) 14983. https://doi.org/10.3390/ijms241914983.

V. Patravale, P. Dandekar, R. Jain, Nanoparticulate drug delivery: Perspectives on the transition from laboratory to market, Woodhead Publishing Series Biomedicine, Cambridge, UK, 2012, p. 229. ISBN 978-1-908818-19-5.

S. Sreekumar, F.M. Goycoolea, B.M. Moerschbacher, G.R. Rivera-Rodriguez. Parameters influencing the size of chitosan-TPP nano- and microparticles. Scientific Reports 8 (2018) 4695. https://doi.org/10.1038/s41598-018-23064-4.

Y. Ciro, J. Rojas, M.J. Alhajj, G.A. Carabali, C.H. Salamanca. Production and characterization of chitosan - polyanion nanoparticles by polyelectrolyte complexation assisted by high-intensity sonication for the modified release of methotrexate. Pharmaceuticals 13 (2020) 11. https://doi.org/10.3390/ph13010011.

N.K. Al-Nemrawi, A.R. Okour, R.H. Dave. Surface modification of PLGA nanoparticles using chitosan: Effect of molecular weight, concentration, and degree of deacetylation. Advanced Polymeric Science and Technology 37 (2018) 3066-3075. https://onlinelibrary.wiley.com/doi/epdf/10.1002/adv.22077.

L. Baghirova, K. Tilki, A.A. Ozturk. Evaluation of cell proliferation and wound healing effects of vitamin A palmitate-loaded PLGA/chitosan-coated PLGA nanoparticles: Preparation, characterization, release, and release kinetics. ACS Omega 8 (2023) 2658-2668. https://doi.org/10.1021/acsomega.2c07232.

M. Gaur, S. Maurya, M.S. Akhtar, A.B. Yadav. Synthesis and evaluation of BSA-loaded PLGA–chitosan composite nanoparticles for the protein-based drug delivery system. ACS Omega 8 (2023) 8751-18759. https://doi.org/10.1021/acsomega.3c00738.

M. Safdari, E. Shakiba, S. Kiaie, A. Fattahi. Preparation and characterization of ceftazidime loaded electrospun silk fibroin/gelatin mat for wound dressing. Fibers and Polymers 17 (2016) 744-750. https://doi.org/10.1007/s12221-016-5822-3.

T.G. Volova, A.V. Demidenko, A.V. Murueva, A.E. Dudaev, I. Nemtsev, E.I. Shishatskaya. Biodegradable polyhydroxyalkanoates formed by 3-and 4-hydroxybutyrate monomers to produce nanomembranes suitable for drug delivery and cell culture. Technologies 11 (2023) 106. https://doi.org/10.3390/technologies11040106.

N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews 116 (2016) 2602-2663. https://doi.org/10.1021/acs.chemrev.5b00346.

T. Freier, C. Kunze, C. Nischan, S. Kramer, K. Sternberg, T. Hoptu, K.P. Schmitz. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials 23 (2002) 2649-2657. https://doi.org/10.1016/S0142-9612(01)00405-7.

R.W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, N.A. Peppas. Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics 15 (1983) 25-35. https://doi.org/10.1016/0378-5173(83)90064-9.

N. Drozd, A. Lunkov, B. Shagdarova, A. Il’ina, V. Varlamov. New N-methylimidazole-functionalized chitosan derivatives: Hemocompatibility and antibacterial properties. Biomimetics 8 (2023) 302. https://doi.org/10.3390/biomimetics8030302.

V. Balan, L. Verestiuc. Strategies to improve chitosan hemocompatibility: A review. European Polymer Journal 53 (2014) 171-188. https://doi.org/10.1016/j.eurpolymj.2014.01.033.

Z. Fu, H. Qiu, Y. Xu, C. Tan, H. Wang. Biological effects, properties and tissue engineering applications of polyhydroxyalkanoates: A review. International Journal of Biological Macromolecules 25 (2025) 139281. https://doi.org/10.1016/j.ijbiomac.2024.139281.

E. Shishatskaya, A. Goreva, G. Kalacheva, T. Volova. Biocompatibility and resorption of intravenously administered polymer microparticles in tissues of internal organs of laboratory animals. Journal of Biomaterials Science, Polymer Edition 22 (2011) 2185-2203. https://doi.org/10.1163/092050610X537138.

EN ISO TR 7405: Dentistry — Evaluation of Biocompatibility of Medical Devices Used in Dentistry (2018).

A.V. Murueva, A.M. Shershneva, I.V. Nemtsev, E.I. Shishatskaya, T.G. Volova. Collagen conjugation to carboxyl-modified poly (3-hydroxybutyrate) microparticles: preparation, characterization and evaluation in vitro. Journal of Polymer Research 29 (2022) 324. https://doi.org/10.1007/s10965-022-03181-5.

J. Li, S. Zhuang. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. European Polymer Journal 138 (2020) 109984. https://doi.org/10.1016/j.eurpolymj.2020.109984.

I. Stefanini, M. Boni, P. Silvaplana, P. Lovera, S. Pelassa, G. De Renzi, B. Mognetti. Antimicrobial resistance, an update from the ward: Increased incidence of new potential pathogens and site of infection-specific antibacterial resistances. Antibiotics 9 (2020) 631. https://doi.org/10.3390/antibiotics9090631.

Downloads

Published

18-03-2025

Issue

Section

Pharmaceutics

How to Cite

Chitosan-modified ceftazidime loaded polyhydroxyalkanoates microparticles: preparation, characterization and antibacterial evaluation in vitro: Original scientific article. (2025). ADMET and DMPK, 13(2), 2645. https://doi.org/10.5599/admet.2645

Funding data

Similar Articles

1-10 of 277

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)