Characterization of biosurfactants’ micelles formation using fluorescence measurements: sodium taurocholate as case of study

Authors

  • Susana Amézqueta Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain https://orcid.org/0000-0001-8976-467X
  • Elisabet Fuguet Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain and Serra Húnter Programme, Generalitat de Catalunya, Barcelona, Spain https://orcid.org/0000-0001-9429-4836
  • Rubén Cabañas Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain https://orcid.org/0009-0005-8130-0092
  • Clara Ràfols Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain and Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain https://orcid.org/0000-0001-7811-986X

DOI:

https://doi.org/10.5599/admet.2322

Keywords:

Bile salts, critical micelle concentration, fluorescence spectrophotometry, biorelevant media
Graphical Abstract

Abstract

Background and purpose: The evaluation of micellization parameters of surfactants that aggregate gradually, such as bile salts, is not trivial. In this work, different probes and data treatment models are tested to set up an analytical method based on fluorescence measurements to determine the critical micelle concentration (CMC) and micellization range (DC) of biosurfactants. Sodium taurocholate (NaTc) is used as example. Experimental approach: The fluorescence intensity of five fluorophores has been monitored upon the addition of a concentrated NaTc solution in two different media: water and a biorelevant buffer (maleic buffer pH 6.5, I = 120 mM). Four different data treatment methods have been tested. Key results; The micellization process can be evaluated satisfactorily using fluorescent probes such as propranolol and tetracaine, and also monitoring directly the intrinsic fluorescence of NaTc. However, the results obtained with nonpolar probes (pyrene and naphthalene) are more complex to evaluate due to the presence of confluent processes. Although the four models tested for the data treatment are commonly used for this purpose, Carpena’s method is the most appropriate as it provides the most accurate CMC and ΔC values. The micellization process is faster in a biorelevant buffer than in water. Conclusion: The study of the micellization of bile salts is not an evident process. After the selection of adequate probes and data treatment methods, the CMC values for NaTC in water and maleic buffer reveal that the biorelevant conditions favour micellization, which in turn may allow faster solubilization of ingested compounds.

Downloads

Download data is not yet available.

References

M. Jafari, F. Mehrnejad, F. Rahimi, S.M. Asghari, The molecular basis of the sodium dodecyl sulfate effect on human ubiquitin structure: A molecular dynamics simulation study, Scientific Reports 8 (2018) 2150. https://doi.org/10.1038/s41598-018-20669-7

N.A. Malik, Solubilization and interaction studies of bile salts with surfactants and drugs: a review, Applied Biochemistry and Biotechnology 179 (2016) 179-201. https://doi.org/10.1007/s12010-016-1987-x

P.Y. Parekh, V.I. Patel, M.R. Khimani, P. Bahadur, Self-assembly of bile salts and their mixed aggregates as building blocks for smart aggregates, Advances in Colloid and Interface Science 312 (2023) 102846. https://doi.org/10.1016/j.cis.2023.102846

K. Matsuoka, A. Yamamoto, Study on micelle formation of bile salt using nuclear magnetic resonance spectroscopy, Journal of Oleo Science 66 (2017) 1129-1137. https://doi.org/10.5650/jos.ess17063.

M.C. Carey, D.M. Small, Micelle Formation by Bile Salts Physical-Chemical and Thermodynamic Considerations, Archives in Internal Medicine 130 (1972) 502-527. https://doi.org/10.1001/archinte.1972.03650040040005

K. Matsuoka, Y. Moroi, Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part 1), Biochimica Biophysica Acta 1580 (2002) 189-199. www.bba-direct.com

S.M. Meyerhoffer, L.B. McGown, Critical micelle concentration behavior of sodium taurocholate in water, Langmuir 6 (1990) 187-191. https://doi.org/10.1021/la00091a030

A. Roda, A.F. Hofmann, K.J. Mysels, The influence of bile salt structure on self-association in aqueous solutions, Journal of Biological Chemistry 258 (1983) 6362-6370. https://www.jbc.org/article/S0021-9258(18)32418-9/pdf

C. de O. Rangel-Yagui, A. Pessoa, L.C. Tavares, Micellar solubilization of drugs, Journal of Pharmacy and Pharmaceutical Sciences 8 (2005) 147-163. https://sites.ualberta.ca/~csps/JPPS8(2)/C.Rangel-Yagui/solubilization.pdf

B. Mukherjee, A.A. Dar, P.A. Bhat, S.P. Moulik, A.R. Das, Micellization and adsorption behaviour of bile salt systems, RSC Advances 6 (2016) 1769-1781. https://doi.org/10.1039/c5ra20909a

G. Li, L.B. McGown, Model for bile salt micellization and solubilization from studies of a “polydisperse” array of fluorescent probes and molecular modeling, Journal of Physical Chemistry 98 (1994) 13711-13719. https://doi.org/10.1021/j100102a043

K. Matsuoka, M. Maeda, Y. Moroi, Micelle formation of sodium glyco- and taurocholates and sodium glyco- and taurodeoxycholates and solubilization of cholesterol into their micelles, Colloids Surfaces B 32 (2003) 87-95. https://doi.org/10.1016/S0927-7765(03)00148-6

C. Pigliacelli, P. Belton, P. Wilde, S. Qi, Probing the molecular interactions between pharmaceutical polymeric carriers and bile salts in simulated gastrointestinal fluids using NMR spectroscopy, Journal of Colloid Interface Science 551 (2019) 147-154. https://doi.org/10.1016/j.jcis.2019.05.002

G. Ravidiandjran, Acoustical studies on the effect of urea on the micelles of aqueous surfactants, Indian Journal of Physics 76B (2002) 277-282. https://azpdf.net/document/y4wx85mr-acoustical-studies-effect-urea-micelles-aqueous-surfactants.html

N. Funasaki, M. Fukuba, T. Kitagawa, M. Nomura, S. Ishikawa, S. Hirota, S. Neya, Two-dimensional NMR study on the structures of micelles of sodium taurocholate, Journal of Physical Chemistry B 108 (2004) 438-443. https://doi.org/10.1021/jp030899h

J.M. Goronja, A.M.J. Ležaić, B.M. Dimitrijević, A.M. Malenović, D.R. Stanisavljev, N.D. Pejić, Determination of critical micelle concentration of cetyltrimethyl- ammonium bromide: Different procedures for analysis of experimental data, Hemijska Industrija 70 (2016) 485-492. https://doi.org/10.2298/HEMIND150622055G

J. Aguiar, P. Carpena, J.A. Molina-Bolívar, C. Carnero Ruiz, On the determination of the critical micelle concentration by the pyrene 1:3 ratio method, Journal of Colloid Interface Science 258 (2003) 116-122. https://doi.org/10.1016/S0021-9797(02)00082-6

Biorelevant, Biorelevant Media, (2024). https://biorelevant.com/ (accessed March 3, 2024).

P. Carpena, J. Aguiar, P. Bernaola-Galván, C. Carnero Ruiz, Problems associated with the treatment of conductivity-concentration data in surfactant solutions: Simulations and experiments, Langmuir 18 (2002) 6054-6058. https://doi.org/10.1021/la025770y

R. Ninomiya, K. Matsuoka, Y. Moroi, Micelle formation of sodium chenodeoxycholate and solubilization into the micelles: Comparison with other unconjugated bile salts, Biochimica e Biophysica Acta – Molecular and Cell Biology of Lipids 1634 (2003) 116-125. https://doi.org/10.1016/j.bbalip.2003.09.003

L. Piñeiro, M. Novo, W. Al-Soufi, Fluorescence emission of pyrene in surfactant solutions, Advances in Colloid Interface Science 215 (2015) 1-12. https://doi.org/10.1016/j.cis.2014.10.010

M. Thongngam, D.J. McClements, Isothermal titration calorimetry study of the interactions between chitosan and a bile salt (sodium taurocholate), Food Hydrocolloids 19 (2005) 813-819. https://doi.org/10.1016/j.foodhyd.2004.11.001

E. Fuguet, C. Ràfols, M. Rosés, E. Bosch, Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems, Analytica Chimica Acta 548 (2005) 95-100. https://doi.org/10.1016/j.aca.2005.05.069

G.A. Grijalva-Bustamante, R. V. Quevedo-Robles, T. del Castillo-Castro, M.M. Castillo-Ortega, J.C. Encinas, D.E. Rodríguez-Félix, T.E. Lara-Ceniceros, D. Fernández-Quiroz, J. Lizardi-Mendoza, L. Armenta-Villegas, A novel bile salt-assisted synthesis of colloidal polypyrrole nanoparticles, Colloids and Surfaces A 600 (2020) 124961. https://doi.org/10.1016/j.colsurfa.2020.124961

C. de Oliveira, B. Khatua, B. El-Kurdi, K. Patel, V. Mishra, S. Navina, B.J. Grim, S. Gupta, M. Belohlavek, B. Cherry, J. Yarger, M.D. Green, V.P. Singh, Thermodynamic interference with bile acid demicelleization reduces systemic entry and injury during cholestasis, Scientific Reports 10 (2020) 8462. https://doi.org/10.1038/s41598-020-65451-w

Downloads

Published

16-07-2024 — Updated on 16-07-2024

How to Cite

Amézqueta, S., Fuguet, E., Cabañas, R., & Ràfols, C. (2024). Characterization of biosurfactants’ micelles formation using fluorescence measurements: sodium taurocholate as case of study. ADMET and DMPK, 12(5), 769–780. https://doi.org/10.5599/admet.2322

Issue

Section

Original Scientific Articles

Funding data

Most read articles by the same author(s)