Effect of bicarbonate buffer on artificial membrane permeation of drugs

Original scientific article

Authors

  • Shiori Ishida Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan https://orcid.org/0009-0007-4760-5006
  • Sam Lee Pion Inc. (UK) Ltd. Forest Row Business Park, Station Road, East Sussex, RH18 5DW, United Kingdom https://orcid.org/0009-0005-4379-2807
  • Balint Sinko Pion Inc. (UK) Ltd. Forest Row Business Park, Station Road, East Sussex, RH18 5DW, United Kingdom
  • Karl Box Pion Inc. (UK) Ltd. Forest Row Business Park, Station Road, East Sussex, RH18 5DW, United Kingdom
  • Kiyohiko Sugano Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan https://orcid.org/0000-0001-5652-1786

DOI:

https://doi.org/10.5599/admet.2603

Keywords:

Phosphate buffer, floating lid, lipophilic weakly acidic and basic drugs

Abstract

Background and purpose: The pH value of the small intestine is physiologically maintained by bicarbonate buffer (BCB). However, the effect of BCB on the membrane permeation of drugs has not been investigated. The purpose of this study was to investigate the effect of BCB on the passive membrane permeation of drugs. Experimental approach: The μFlux apparatus (pION Inc.) was used for permeability measurements. To avoid a pH change of BCB, a floating lid was newly developed for μFlux. The membrane filter was coated with a 10 % soybean lecithin-decane solution. The flux measurement was performed in an iso-pH condition (pH 6.5, BCB = 10 mM, buffer capacity (β) = 4.4 mM pH-1). Phosphate buffer (PPB) with the same pH and β was used for comparison (PPB = 8 mM). Key results: The floating lid suppressed the pH increase to less than 0.1 for 120 min. The effective permeability (Pe) values of lipophilic weakly acidic and basic drugs were lower in BCB than in PPB (ketoprofen, naproxen, and propranolol). On the other hand, the Pe values in BCB and PPB were similar for unionizable drugs (caffeine and antipyrine) and hydrophilic weakly basic drugs (metoprolol and procainamide). Conclusion: Passive membrane permeation of lipophilic weakly acidic and basic drugs was slower in BCB than in PPB. This was suggested to be attributed to the slow neutralization rate of BCB, which affects the pH value adjacent to the membrane surface.

Downloads

Download data is not yet available.

References

D.M. Mudie, G.L. Amidon, G.E. Amidon. Physiological parameters for oral delivery and in vitro testing. Molecular Pharmaceutics 7 (2010) 1388-1405. https://doi.org/10.1021/mp100149j

C. Litou, D. Psachoulias, M. Vertzoni, J. Dressman, C. Reppas. Measuring pH and buffer capacity in fluids aspirated from the fasted upper gastrointestinal tract of healthy adults. Pharmaceutical Research 37 (2020) 42. https://doi.org/10.1007/s11095-019-2731-3.

D.A. Silva, J. Al-Gousous, N.M. Davies, N.B. Chacra, G.K. Webster, E. Lipka, G. Amidon, R. Löbenberg. Simulated, biorelevant, clinically relevant or physiologically relevant dissolution media: The hidden role of bicarbonate buffer. European Journal of Pharmaceutics and Biopharmaceutics 142 (2019). https://doi.org/10.1016/j.ejpb.2019.06.006

J.E. Boni, R.S. Brickl, J. Dressman. Is bicarbonate buffer suitable as a dissolution medium? Journal of Pharmacy and Pharmacology 59 (2010). https://doi.org/10.1211/jpp.59.10.0007

D.P. McNamara, K.M. Whitney, S.L. Goss. Use of a Physiologic Bicarbonate Buffer System for Dissolution Characterization of Ionizable Drugs. Pharmaceutical Research 20 (2003) 1641-1646. https://doi.org/10.1023/A:1026147620304

H.M. Fadda, H.A. Merchant, B.T. Arafat, A.W. Basit. Physiological bicarbonate buffers: stabilisation and use as dissolution media for modified release systems. International Journal of Pharmaceutics 382 (2009). https://doi.org/10.1016/j.ijpharm.2009.08.003

G. Garbacz, B. Kołodziej, M. Koziolek, W. Weitschies, S. Klein. An Automated System for Monitoring and Regulating the pH of Bicarbonate Buffers. AAPS PharmSciTech 14 (2013) 517-522. https://doi.org/10.1208/s12249-013-9933-5

N. Scott, K. Patel, T. Sithole, K. Xenofontos, V. Mohylyuk, F. Liu. Regulating the pH of bicarbonate solutions without purging gases: Application to dissolution testing of enteric coated tablets, pellets and microparticles. International Journal of Pharmaceutics 585 (2020). https://doi.org/10.1016/j.ijpharm.2020.119562

A. Sakamoto, K. Izutsu, H. Yoshida, Y. Abe, D. Inoue, K. Sugano. Simple bicarbonate buffer system for dissolution testing: Floating lid method and its application to colonic drug delivery system. Journal of Drug Delivery Science and Technology 63 (2021) 102447. https://doi.org/10.1016/j.jddst.2021.102447

A. Sakamoto, K. Sugano. Dissolution kinetics of nifedipine—ionizable polymer amorphous solid dispersion: comparison between bicarbonate and phosphate buffers. Pharmaceutical Research 38 (2021) 2119-2127. https://doi.org/10.1007/s11095-021-03153-2

S. Ikuta, H. Nakagawa, T. Kai, K. Sugano. Development of bicarbonate buffer flow-through cell dissolution test and its application in prediction of in vivo performance of colon targeting tablets. European Journal of Pharmaceutical Sciences 180 (2023) 106326. https://doi.org/10.1016/j.ejps.2022.106326

J. Al-Gousous, N. Salehi, G.E. Amidon, R.M. Ziff, P. Langguth, G.L. Amidon. Mass Transport Analysis of Bicarbonate Buffer: Effect of the CO2-H2CO3 Hydration-Dehydration Kinetics in the Fluid Boundary Layer and the Apparent Effective p Ka Controlling Dissolution of Acids and Bases. Molecular Pharmaceutics 16 (2019) 2626-2635. https://doi.org/10.1021/acs.molpharmaceut.9b00187

B.J. Krieg, S.M. Taghavi, G.L. Amidon, G.E. Amidon. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases. Journal of Pharmaceutical Sciences 104 (2015) 2894-2904. https://doi.org/10.1002/jps.24460

J.J. Sheng, D.P. McNamara, G.L. Amidon. Toward an In Vivo dissolution methodology: A comparison of phosphate and bicarbonate buffers. Molecular Pharmaceutics 6 (2009) 29-39. https://doi.org/10.1021/mp800148u

K. Krollik, A. Lehmann, C. Wagner, J. Kaidas, H. Kubas, W. Weitschies. The effect of buffer species on biorelevant dissolution and precipitation assays - Comparison of phosphate and bicarbonate buffer. European Journal of Pharmaceutics and Biopharmaceutics 171 (2022) 90-101 https://doi.org/10.1016/j.ejpb.2021.09.009

A. Sakamoto, K. Sugano. Dissolution Profiles of Poorly Soluble Drug Salts in Bicarbonate Buffer. Pharmaceutical Research 40 (2023) 989-998. https://doi.org/10.1007/s11095-023-03508-x

H. Yamamoto, K. Sugano. Drug Crystal Precipitation in Biorelevant Bicarbonate Buffer: A Well-Controlled Comparative Study with Phosphate Buffer. Molecular Pharmaceutics 21 (2024) 2854-2864. https://doi.org/10.1021/acs.molpharmaceut.4c00028

J. Al-Gousous, K.X. Sun, D.P. McNamara, B. Hens, N. Salehi, P. Langguth, M. Bermejo, G.E. Amidon, G.L. Amidon. Mass Transport Analysis of the Enhanced Buffer Capacity of the Bicarbonate-CO2 Buffer in a Phase-Heterogenous System: Physiological and Pharmaceutical Significance. Molecular Pharmaceutics 15 (2018) 5291-5301. https://doi.org/10.1021/acs.molpharmaceut.8b00783

Y. Tarumi, K. Sugano. Dissolution profiles of high-dose salt-form drugs in bicarbonate buffer and phosphate buffer. Journal of Pharmaceutical Sciences 114 (2025) 477-485. https://doi.org/10.1016/j.xphs.2024.10.025

A. Avdeef. Absorption and Drug Development: Solubility, Permeability, and Charge State, Second Edition, John Wiley & Sons, Inc., 2012. ISBN: 978-1-118-28603-6

H. Sudaki, K. Fujimoto, K. Wada, K. Sugano. Phosphate buffer interferes dissolution of prazosin hydrochloride in compendial dissolution testing. Drug Metabolism and Pharmacokinetics 51 (2023) 100519. https://doi.org/10.1016/j.dmpk.2023.100519

N. Okamoto, M. Higashino, H. Yamamoto, K. Sugano. Dissolution Profiles of Immediate Release Products of Various Drugs in Biorelevant Bicarbonate Buffer: Comparison with Compendial Phosphate Buffer. Pharmaceutical Research 41 (2024) 959-966. https://doi.org/10.1007/s11095-024-03701-6

S. Ikuta, H. Nakagawa, T. Kai, K. Sugano. Bicarbonate buffer dissolution test with gentle mechanistic stress for bioequivalence prediction of enteric-coated pellet formulations. European Journal of Pharmaceutical Sciences 192 (2024) 106622. https://doi.org/10.1016/j.ejps.2023.106622

M. Higashino, K. Sugano. Dissolution Profiles of Oral Disintegrating Tablet with Taste Masking Granule Polymer Coating in Biorelevant Bicarbonate Buffer. Chemical and Pharmaceutical Bulletin 72 (2024) 298-302. https://doi.org/10.1248/cpb.c23-00783

M. Higashino, K. Sugano. Comparison of Phosphate and Bicarbonate Buffer Solutions as Dissolution Test Media for Predicting Bioequivalence of Febuxostat Formulation. Chemical and Pharmaceutical Bulletin 72 (2024) 989-995. https://doi.org/10.1248/cpb.c24-00526

M. Kansy, F. Senner, K. Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry 41 (1998) 1007-1010. https://doi.org/10.1021/jm970530e

K. Sugano, M. Kansy, P. Artursson, A. Avdeef, S. Bendels, L. Di, G.F. Ecker, B. Faller, H. Fischer, G. Gerebtzoff, H. Lennernaes, F. Senner. Coexistence of passive and carrier-mediated processes in drug transport. Nature Reviews Drug Discovery 9 (2010) 597-614. https://doi.org/10.1038/nrd3187

N. Sun, A. Avdeef. Biorelevant pK a (37°C) predicted from the 2D structure of the molecule and its pK a at 25°C. Journal of Pharmaceutical and Biomedical Analysis 56 (2011) 173-182. https://doi.org/10.1016/j.jpba.2011.05.007

A. Avdeef. Leakiness and size exclusion of paracellular channels in cultured epithelial cell monolayers-interlaboratory comparison. Pharmaceutical Research 27 (2010) 480-489. https://doi.org/10.1007/s11095-009-0036-7

S. Yamauchi, K. Sugano. Permeation characteristics of tetracyclines in parallel artificial membrane permeation assay. ADMET and DMPK 7 (2019) 151-160. https://doi.org/10.5599/admet.657

E.T. Urbansky, M.R. Schock. Understanding, Deriving, and Computing Buffer Capacity. Journal of Chemical Education 77 (2009) 1640. https://doi.org/10.1021/ed077p1640

K. Sugano, Y. Nabuchi, M. Machida, Y. Asoh. Permeation characteristics of a hydrophilic basic compound across a bio-mimetic artificial membrane. International Journal of Pharmaceutics 275 (2004) 271-278. https://doi.org/10.1016/j.ijpharm.2004.02.010

Z.S. Teksin, K. Hom, A. Balakrishnan, J.E. Polli. Ion pair-mediated transport of metoprolol across a three lipid-component PAMPA system. Journal of Controlled Release 116 (2006) 50-57. https://doi.org/10.1016/j.jconrel.2006.08.020

Y.F. Shiau, P. Fernandez, M.J. Jackson, S. McMonagle. Mechanisms maintaining a low-pH microclimate in the intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology 248 (1985) G608-G617. https://doi.org/10.1152/ajpgi.1985.248.6.G608

K.G. Mooney, M.A. Mintun, K.J. Himmelstein, V.J. Stella. Dissolution kinetics of carboxylic acids II: Effect of buffers. Journal of Pharmaceutical Sciences 70 (1981) 22-32. https://doi.org/10.1002/jps.2600700104

S.S. Ozturk, B.O. Palsson, J.B. Dressman. Dissolution of lonizable Drugs in Buffered and Unbuffered Solutions. Pharmaceutical Research 5 (1988) 272-282. https://doi.org/10.1023/A:1015970502993

A. Avdeef, O. Tsinman. Miniaturized rotating disk intrinsic dissolution rate measurement: Effects of buffer capacity in comparisons to traditional wood’s apparatus. Pharmaceutical Research 25 (2008) 2613-2627. https://doi.org/10.1007/s11095-008-9679-z.

Downloads

Published

18-01-2025

Issue

Section

Pharmacokinetics and toxicology

How to Cite

Effect of bicarbonate buffer on artificial membrane permeation of drugs: Original scientific article. (2025). ADMET and DMPK, 13(1), 2603. https://doi.org/10.5599/admet.2603

Similar Articles

1-10 of 194

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)