Oral bioavailability enhancement of doxazosin mesylate: Nanosuspension versus self-nanoemulsifying drug delivery systems

Authors

  • Al Zahraa G. Al Ashmawy Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt https://orcid.org/0000-0003-4800-3617
  • Mohammad H. Alyami Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia https://orcid.org/0000-0003-2731-1071
  • Noura G. Eissa Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt https://orcid.org/0000-0001-8460-0836
  • Gehan F. Balata Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt https://orcid.org/0000-0001-8638-425X
  • Hanan M. El Nahas Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt https://orcid.org/0000-0002-9148-3276

DOI:

https://doi.org/10.5599/admet.2022

Keywords:

hypertension, solubility, zeta potential, mean arterial blood pressure, dissolution

Abstract

Background and purpose: Doxazosin mesylate (DOX) is an antihypertensive drug that possesses poor water solubility and, hence, poor release properties. Both nanosuspensions and self-nanoemulsifying drug delivery systems (SNEDDS) are becoming nanotechnology techniques for the enhancement of water solubility of different drugs. Experimental approach: The study's goal was to identify the best drug delivery system able to enhance the release and antihypertensive effect of DOX by comparing the physical characteristics such as particle size, zeta potential, entrapment efficiency, release rate, and main arterial blood pressure of DOX-loaded nanosuspensions and SNEDDS in liquid and solid form. Key results: DOX nanosuspension preparation had a particle size of 385±13 nm, poly-dispersity index of 0.049±3, zeta potential of 50 ± 4 mV and drug release after 20 min (91±0.43 %). Liquid SNEDDS had a droplet size of 224±15 nm, poly-dispersity index of (0.470±0.01), zeta potential of -5±0.10 mV and DR20min of 93±4 %. Solid SEDDS showed particle size of 79±14 nm, poly-dispersity index of 1±0.00, a zeta potential of -18 ±0.26 mv and DR20min of 100 ±2.72 %. Conclusion: Finally, in terms of the mean arterial blood pressure lowering, solid SNEDDS performed better effect than both liquid SNEDDS and nanosuspension (P >0.05).

Downloads

Download data is not yet available.

References

S. Kim, H. Lee, Y. Na, K. Bang, H. Lee, M. Wang, H. Huh, C. Cho. A novel composition of ticagrelor by solid dispersion technique for increasing solubility and intestinal permeability. International Journal of Pharmaceutics 555 (2019) 11-18. http://doi.org/10.1016/j.ijpharm.2018.11.038.

N. Rasenack, B. W. Müller. Release rate enhancement by in situ micronization of poorly water-soluble drugs. Pharmaceutical Research 19 (2002) 1894-1900. https://doi.org/10.1023/A:1021410028371.

C. Taniguchi, Y. Kawabata, K. Wada, S. Yamada, S. Onoue. Microenvironmental pH-modification to improve release behavior and oral absorption for drugs with pH-dependent solubility. Expert opinion on drug delivery 11 (2014) 505-516. https://doi.org/10.1517/17425247.2014.881798.

M. Ishikawa, Y. Hashimoto. Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. Journal of Medicinal Chemistry 54 (2011) 1539-1554. https://doi.org/10.1021/jm101356p.

D. Van Staden, J. Du Plessis, J. Viljoen. Development of topical/transdermal self-emulsifying drug delivery systems, not as simple as expected. Scientia Pharmaceutica 88 (2020) 17. https://doi.org/10.3390/scipharm88020017.

A.A. Date, N. Desai, R. Dixit, M. Nagarsenker. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine 5 (2010) 1595-1616. https://doi.org/10.2217/nnm.10.126.

V.R. Patel, Y. Agrawal. Nanosuspension: An approach to enhance solubility of drugs. Journal of Advanced Pharmaceutical Technology & Research 2 (2011) 81.

https://doi.org/10.4103/2231-4040.82950.

V.B. Patravale, A.A. Date, R.M. Kulkarni. Nanosuspensions: a promising drug delivery systems. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN) 2 (2009) 679-684. https://doi.org/10.1211/0022357023691.

R. Yadollahi, K. Vasilev, S. Simovic. Nanosuspension technologies for delivery of poorly soluble drugs. Journal of Nanomaterials 2015 (2015) 216375. https://doi.org/10.1155/2015/216375.

S. Jacob, A.B. Nair, J. Shah. Emerging role of nanosuspensions in drug delivery systems. Biomaterials Research 24 (2020) 3. https://doi.org/10.1186/s40824-020-0184-8.

M.D. Prajapat, N.J. Patel, A. Bariya, S.S. Patel, S.B. Butani. Formulation and evaluation of self-emulsifying drug delivery system for nimodipine, a BCS class II drug. Journal of Drug Delivery Science and Technology 39 (2017) 59-68. https://doi.org/10.1016/J.JDDST.2017.02.002.

K. Sanka, D. Suda, V. Bakshi. Optimization of solid-self nanoemulsifying drug delivery system for solubility and release profile of clonazepam using simplex lattice design. Journal of Drug Delivery Science and Technology 33 (2016) 114-124. https://doi.org/10.1016/j.jddst.2016.04.003.

K. Kohli, S. Chopra, D. Dhar, S. Arora, R.K. Khar. Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug discovery today 15 (2010) 958-965. https://doi.org/10.1016/j.drudis.2010.08.007.

M. Shafique, M.A. Khan, W.S. Khan, W. Ahmad, S. Khan. Fabrication, characterization, and in vivo evaluation of famotidine loaded solid lipid nanoparticles for boosting oral bioavailability. Journal of Nanomaterials 2017 (2017) 7357150. https://doi.org/10.1155/2017/7357150.

A. Nasr, A. Gardouh, M. Ghorab. Novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics 8 (2016) 20. https://doi.org/10.3390/pharmaceutics8030020.

P.K. Whelton, R.M. Carey, W.S. Aronow, D.E. Casey, K.J. Collins, C. Dennison Himmelfarb, S.M. DePalma, S. Gidding, K.A. Jamerson, D.W. Jones. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ /ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology 71 (2018) e127-e248. https://doi.org/10.1001/jama.2017.18209.

H.H. Ali, A.A. Hussein. Oral solid self-nanoemulsifying drug delivery systems of candesartan citexetil: formulation, characterization and in vitro drug release studies. AAPS Open 3 (2017) 6. https://doi.org/10.1186/s41120-017-0015-8.

G. Preethi, S. Banerjee, H. Shivakumar, M. Ravi Kumar. Formulation of fast-dissolving tablets of doxazosin mesylate drug by direct compression method. International Journal of Applied Pharmaceutics 9 (2017) 22-28. https://doi.org/10.22159/ijap.2017v9i5.18168.

A.G. Al Ashmawy, N.G. Eissa, H.M. El Nahas, G.F. Balata. Fast disintegrating tablet of Doxazosin Mesylate nanosuspension: Preparation and characterization. Journal of Drug Delivery Science and Technology 61 (2021) 102210. https://doi.org/10.1016/j.jddst.2020.102210.

A.G. Al Ashmawy, N.G. Eissa, G.F. Balata, H.M. El Nahas. New Approach for Administration of Doxazosin Mesylate: Comparative Study between Liquid and Solid Self-nanoemulsifying Drug Delivery Systems. International Journal of Research in Pharmaceutical Sciences 12(2) (2021) 1095-1101. https://ijrps.com/home/article/view/93.

M.A. Hadi, N.R. Rao, A.S. Rao. Formulation and evaluation of pH-responsive mini-tablets for ileo-colonic targeted drug delivery. Tropical Journal of Pharmaceutical Research 13 (2014) 1021-1029. https://doi.org/10.4314/tjpr.v13i7.3.

B. Pe. Percutaneous treatment of low flow vascular malformations. Journal of Vascular and Interventional Radiology 15 (2004) 431-445. https://doi.org/10.1097/01.rvi.0000124949.24134.cf.

S. Parasuraman, R. Raveendran. Measurement of invasive blood pressure in rats. Journal of Pharmacology and Pharmacotherapeutics 3 (2012) 172-177. https://pubmed.ncbi.nlm.nih.gov/22629093/.

H. Kiers, J. Hofstra, J. Wetzels. Oscillometric blood pressure measurements: differences between measured and calculated mean arterial pressure. The Netherlands Journal of Medicine 66 (2008) 474-479. https://europepmc.org/article/med/19075313.

S.G.M. Ong, L.C. Ming, K.S. Lee, K.H. Yuen. Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics 8 (2016) 25. https://doi.org/10.3390/pharmaceutics8030025.

P.M. Chaudhari, M.A. Kuchekar. Development and evaluation of nanoemulsion as a carrier for topical delivery system by box-behnken design. Development 11 (2018) 286-293. https://doi.org/10.22159/ajpcr.2018.v11i8.26359.

M. Kazi, M. Al-Swairi, A. Ahmad, M. Raish, F.K. Alanazi, M.M. Badran, A.A. Khan, A.M. Alanazi, M.D. Hussain. Evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for poorly water-soluble talinolol: Preparation, in vitro and in vivo assessment. Frontiers in pharmacology 10 (2019) 459. https://doi.org/10.3389/fphar.2019.00459.

A. Khames. Formulation and characterization of eplerenone nanoemulsion liquisolids, an oral delivery system with higher release rate and improved bioavailability. Pharmaceutics 11 (2019) 40. https://doi.org/10.3390/pharmaceutics11010040.

U. Farooq, M.T. Tweheyo, J. Sjöblom, G. Øye. Surface characterization of model, outcrop, and reservoir samples in low salinity aqueous solutions. Journal of Dispersion Science and Technology 32 (2011) 519-531. https://doi.org/10.1080/01932691003756936.

L. Du, J. Wang, Y. Zhang, C. Qi, M.P. Wolcott, Z. Yu. Preparation and characterization of cellulose nanocrystals from the bio-ethanol residuals. Nanomaterials 7 (2017) 51. https://doi.org/10.3390/nano7030051.

A. Kaur, P.K. Parmar, A.K. Bansal. Evaluation of different techniques for size determination of drug nanocrystals: A case study of celecoxib nanocrystalline solid dispersion. Pharmaceutics 11 (2019) 516. https://doi.org/10.3390/pharmaceutics11100516.

C. Bhagat, S.K. Singh, P.R.P. Verma, N. Singh, S. Verma, M.N. Ahsan. Crystalline and amorphous carvedilol-loaded nanoemulsions: formulation optimisation using response surface methodology. Journal of Experimental Nanoscience 8 (2013) 971-992. https://doi.org/10.1080/17458080.2011.630037.

J. Wei, J. Zhang, L. Wang, B.J. Cha, S. Jiang, R. Liu. A new low-nephron CKD model with hypertension, progressive decline of renal function, and enhanced inflammation in C57BL/6 mice. American Journal of Physiology-Renal Physiology 314(5) (2018) F1008-F1019. https://doi.org/10.1152/ajprenal.00574.2017.

Downloads

Published

03-11-2023

Issue

Section

Original Scientific Articles

How to Cite

Oral bioavailability enhancement of doxazosin mesylate: Nanosuspension versus self-nanoemulsifying drug delivery systems. (2023). ADMET and DMPK, 12(1), 167-176. https://doi.org/10.5599/admet.2022

Funding data

Similar Articles

1-10 of 238

You may also start an advanced similarity search for this article.