Affordable voltammetric sensor based on anodized disposable pencil graphite electrodes for sensitive determination of dopamine and uric acid in presence of high concentration of ascorbic acid

  • Preethi Sankaranarayanan Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036,Tamil Nadu http://orcid.org/0000-0003-1298-7933
  • Sangaranarayanan V. Venkateswaran Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036,Tamil Nadu
Keywords: Anodization, Pencil Graphite Electrode, Dopamine, Uric acid, Ascorbic Acid

Abstract

A simple, disposable and low - cost voltammetric sensor based on the anodized pencil graphite electrode (APGE) for the simultaneous determination of dopamine (DA) and uric acid (UA) is demonstrated. The physico-chemical properties of the pencil graphite electrode (PGE) before and after anodization were analyzed using FT-IR, FT-Raman, SEM and EIS characterization techniques. In comparison to PGE, APGE exhibited excellent electrochemical activity towards the simultaneous detection of DA and UA with peak-to-peak separation of about 0.18 V even in the presence of high concentration (2 mM) of ascorbic acid (AA). The discrimination of APGE towards AA was rationalized through the absence of favorable surface interactions between oxygen rich functional groups on the surface of APGE and AA. Using DPV without any pre-concentration step and under optimized conditions, APGE displayed a linear range of 1 – 80 μM with an estimated limit of detection (LOD, 3σ/m) of 0.008 μM and 0.014 μM for DA and UA, respectively. Moreover, a higher sensitivity in comparison to other previously reported pretreated pencil graphite electrodes was observed for DA (34.32 μA/μM) and UA (12.33 μA/μM). The practical applicability of APGE was demonstrated through the estimation of DA in human blood serum and UA in urine samples.

Author Biography

Preethi Sankaranarayanan, Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036,Tamil Nadu

Research Scholar

Department of Chemistry

References

R. M. Wightman, L. J. May, A. C. Michael, Analytical Chemistry60 (1988) 769A-779A.

A. Liu, I. Honma, H. Zhou, Biosensors and Bioelectronics21 (2005) 809–816.

J. W. Mo, B. Ogorevc, Analytical Chemistry73 (2001) 1196–1202.

C. D. Salzman, M. A. Belova, J. J. Paton, Current Opinion in Neurobiology15 (2005) 721–729.

J. M. Zen, J. J. Jou, G. Ilangovan, Analyst123 (1998) 1345–1350.

M. Alderman, K. J. V. Aiyer, Current Medical Research and Opinion20 (2004) 369–379.

E. Liberopoulos, D. Christides, M. Elisaf, Journal of Hypertension20 (2002) 347–348.

C. R. Raj, T. Ohsaka, Journal of Electroanalytical Chemistry540 (2003) 69–77.

S. H. Huang, Y. C. Shih, C. Y. Wu, C. J. Yuan, Y. S. Yang, Y. K. Li, T. K. Wu, Biosensors & Bioelectronics19 (2004) 1627–1633.

R. J. Johnson, D. H. Kang, D. Feig, S. Kivlighn, J. Kanellis, S. Watanabe, K. R. Tuttle, B. R. Iturbe, J. H. Acosta, M. Mazzali, Hypertension41 (2003) 1183–1190.

E. Alipour, M. R. Majidi, A. Saadatirad, S. M. Golabi, A. M. Alizadeh, Electrochimica Acta91 (2013) 36–42.

M. Govindasamy, S. M. Chen, V. Mani, A. Sathiyan, J. P. Merlin, F. M. A. Al-Hemaid, M. A. Ali, RSC Advances6 (2016) 100605–100613.

D. Lakshmi, M. J. Whitcombe, F. Davis, P. S. Sharma, B. B. Prasad, Electroanalysis23 (2011) 305–320.

T. Q. Xu, Q. L. Zhang, J. N. Zheng, Z. Y. Lv, J. Wei, A. J. Wang, J. J. Feng, Electrochimica Acta115 (2014) 109–115.

J. Sun, L. Li, X. Zhang, D. Liu, S. Lv, D. Zhu, T. Wu, T. You, RSC Advances5 (2015) 11925–11932.

Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, X. H. Xia, Biosensors and Bioelectronics34 (2012) 125–131.

J. A. Ribeiro, P. M. V. Fernandes, C. M. Pereira, F. Silva, Talanta160 (2016) 653–679.

V. S. Vasantha, S. M. Chen, Journal of Electroanalytical Chemistry592 (2006) 77–87.

Y. Wu, Z. Dou, Y. Liu, G. Lv, T. Pu, X. He, RSC Advances3 (2013) 12726–12734.

A. Safavi, N. Maleki, O. Moradlou, F. Tajabadi, Analytical Biochemistry359 (2006) 224–229.

S. Yang, G. Li, R. Yang, M. Xia, L. Qu, Journal of Solid State Electrochemistry15 (2011) 1909–1918.

B. Habibi, M. H. P. Azar, Electrochimica Acta55 (2010) 5492–5498.

M. M. Ardakani, H. Beitollahi, B. Ganjipour, H. Naeimi, M. Nejati, Bioelectrochemistry75 (2009) 1–8.

M. R. Akanda, M. Sohail, M. A. Aziz, A. N. Kawde, Electroanalysis28 (2016) 408–424.

S. Thiagarajan, S. M. Chen, Talanta74 (2007) 212–222.

M. Noroozifar, M. Khorasani Motlagh, A. Taheri, Talanta80 (2010) 1657–1664.

A. Rana, N. Baig, T. A. Saleh, Journal of Electroanalytical Chemistry833 (2019) 313–332.

A. L. Beilby, T. A. Sasaki, A. L. Beilby, Analytical Chemistry67 (1995) 976–980.

R. C. Engstrom, V. A. Strasser, Analytical Chemistry56 (1984) 136–141.

M. Mogensen, K. V. Jensen, M. J. Jorgensen, S. Primdahl, Solid State Ionics150(2002) 123–129.

S. H. Huang, H. H. Liao, D. H. Chen, Biosensors and Bioelectronics25 (2010) 2351–2355.

J. Li, X. Q. Lin, Analytica Chimica Acta596 (2007) 222–230.

I. G. David, D. E. Popa, M. Buleandra, Journal of Analytical Methods in Chemistry2017 (2017) 1–22.

R. L. McCreery, Chemical Reviews108 (2008) 2646–2687.

N. Aravindan, M. V. Sangaranarayanan, Journal of Electroanalytical Chemistry789 (2017) 148–159.

S. Mondal, N. Aravindan, M. V. Sangaranarayanan, Electrochimica Acta324 (2019) 134875–134888.

H. T. Purushothama, Y. A. Nayaka, M. M. Vinay, P. Manjunatha, R. O. Yathisha, K. V. Basavarajappa, Journal of Science: Advanced Materials and Devices3 (2018) 161–166.

A. Özcan, S. İlkbaş, A. Atılır Özcan, Talanta165 (2017) 489–495.

A. Özcan, Y. Şahin, Electroanalysis21 (2009) 2363–2370.

A. J. Saleh Ahammad, S. Sarker, M. Aminur Rahman, J. J. Lee, Electroanalysis22 (2010) 694–700.

N. Vishnu, A. S. Kumar, Analytical Methods7 (2015) 1943–1950.

S. Sundaram, S. K. Annamalai, Electrochimica Acta62 (2012) 207–217.

N. Vishnu, A.S. Kumar, K.C. Pillai, Analyst138 (2013) 6296–6300.

U. J. Kim, C. A. Furtado, X. Liu, G. Chen, P. C. Eklund, Journal of the American Chemical Society127 (2005) 15437–15445.

Y. Yi, G. Weinberg, M. Prenzel, M. Greiner, S. Heumann, S. Becker, R. Schlögl, Catalysis Today295 (2017) 32–40.

A. B. Soliman, H. S. A. Samad, S. S. A. Rehim, H. H. Hassan, Scientific Reports6 (2016) 01–12.

K. Ray, R. L. McCreery, Analytical Chemistry69 (1997) 4680–4687.

T. C. Girija, M. V. Sangaranarayanan, Journal of Power Sources156 (2006) 705–711.

N. Tukimin, J. Abdullah, Y. Sulaiman, Sensors17 (2017) 1539–1551.

Y. Zhang, J. Bin Zheng, Electrochimica Acta52 (2007) 7210–7216.

E. Laviron, Journal of Electroanalytical Chemistry101 (1979) 19–28.

N. H. Nguyen, C. Esnault, F. Gohier, D. Bélanger, C. Cougnon, Langmuir25 (2009) 3504–3508.

Z. Yu, X. Li, X. Wang, X. Ma, X. Li, K. Cao, Journal of Chemical Sciences124 (2012) 537–544.

M. M. Ardakani, M. A. Soorki, A. Khoshroo, F. Sabaghian, B.F. Mirjalili, Iranian Journal of Pharmaceutical Research17 (2018) 851–863.

Analytical Methods Committee, Analyst112 (1987) 199–204.

Z. Temoçin, Sensors and Actuators, B: Chemical176 (2013) 796–802.

S. Thiagarajan, T. H. Tsai, S. M. Chen, Biosensors and Bioelectronics24 (2009) 2712–2715.

U. Chandra, B. E. K. Swamy, O. Gilbert, S. Reddy, B. S. Sherigara, American Journal of Analytical Chemistry02 (2011) 262–269.

X. Fan, Y. Xu, T. Sheng, D. Zhao, H. Yuan, F. Liu, X. Liu, X. Zhu, L. Zhang, J. Lu, Microchimica Acta186 (2019) 324–332.

Published
19-05-2020
Section
Electrochemical Science