Yellow DS5R polymeric film modified glassy carbon electrode for voltammetric assay of uric acid
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2416Keywords:
Reactive dye, electro-polymerization, electroactive biomolecules, cyclic voltammetry
Abstract
This work focuses on the development of a novel and affordable yellow DS5R polymeric film on the glassy carbon electrode surface (Po-YDS5R/GCE) for the detection of uric acid (UAC). Po-YDS5R/GCE was effectively developed using the cyclic potentiodynamic polymerization technique. The sweep rate study revealed that the overall electrode reaction is diffusion-controlled. The linear range of 10-60 µM of UAC was used to compute the limit of quantification and limit of detection, and the results yielded 3.12 and 0.87 µM, respectively. The interference of dopamine on the electrooxidation of UAC was tested at the developed sensor. It was discovered that the modified sensor allows selective detection of UAC. These impressive outcomes showed that a simple and less costly Po-YDS5R/GCE sensor has the potential to make significant improvements over current electrochemical sensor technology.
Downloads
References
A. Cetinkaya, B. D. Topal, E. B. Atici, S. A. Ozkan, Simple and highly sensitive assay of axitinib in dosage form and biological samples and its electrochemical behavior on the boron-doped diamond and glassy carbon electrodes, Electrochimica Acta 386 (2021) 138443. https://doi.org/10.1016/j.electacta.2021.138443
E. Mehmeti, D. M. Stanković, A. Ortner, J. Zavašnik, K. Kalcher, Highly Selective Electro-chemical Determination of Phlorizin Using Square Wave Voltammetry at a Boron-Doped Diamond Electrode, Food Analytical Methods 10 (2017) 3747-3752. https://doi.org/10.1007/s12161-017-0935-x
A. Savk, B. Özdil, B. Demirkan, M. S. Nas, M. H. Calimli, M. H. Alma, Inamuddin, A. M. Asiri, F. Şen, Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid, Materials Science and Engineering C 99 (2019) 248-254. https://doi.org/10.1016/j.msec.2019.01.113
N. T. V. Hoan, N. N. Minh, N. T. H. Trang, L. T. T. Thuy, C. Van Hoang, T. X. Mau, H. X. A. Vu, P. T. K. Thu, N. H. Phong, D.Q. Khieu, Simultaneous Voltammetric Determination of Uric Acid, Xanthine, and Hypoxanthine Using CoFe2O4/Reduced Graphene Oxide-Modified Electrode, Journal of Nanomaterials 2020 (2020) 9797509. https://doi.org/10.1155/2020/9797509
K. Shi, K. K. Shiu, Determination of uric acid at electrochemically activated glassy carbon electrode, Electroanalysis 13 (2001) 1319-1325. https://doi.org/10.1002/1521-4109(200111)13:16<1319::AID-ELAN1319>3.0.CO;2-C
H. Kaur, B. Halliwell, Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products, Chemico-Biological Interactions 73 (1990) 235-247. https://doi.org/10.1016/0009-2797(90)90006-9
D. Ortiz-Aguayo, M. Bonet-San-Emeterio, M. D. Valle, Simultaneous voltammetric determination of acetaminophen, ascorbic acid and uric acid by use of integrated array of screen-printed electrodes and chemometric tools, Sensors 19 (2019) 3286. https://doi.org/10.3390/s19153286
C. Zhao, J. Xiao, T. Liu, H. Shi, Q. Li, Z. Ruan, Electrochemical Sensor Based on Glass Carbon Electrode Modified with Graphene Quantum Dots (GQDs) for Detection of Uric Acid, International Journal of Electrochemical Science 17 (2022) 22096. https://doi.org/10.20964/2022.09.17
Y. J. Chang, M. C. Lee, Y. C. Chien, Quantitative determination of uric acid using paper-based biosensor modified with graphene oxide and 5-amino-1,3,4-thiadiazole-2-thiol, SLAS Technology 27 (2022) 54-62. https://doi.org/10.1016/j.slast.2021.10.010
U. Chandra, B. E. K. Swamy, O. Gilbert, B. S. Sherigara, Poly (Naphthol Green B) film based sensor for resolution of dopamine in the presence of uric acid: A voltammetric study, Analytical Methods 3 (2011) 2068-2072. https://doi.org/10.1039/c1ay05179b
T. Dhanasekaran, R. Manigandan, A. Padmanaban, R. Suresh, K. Giribabu, V. Narayanan, Fabrication of Ag@Co-Al Layered Double Hydroxides Reinforced poly(o-phenylenediamine) Nanohybrid for Efficient Electrochemical Detection of 4-Nitrophenol, 2,4-Dinitrophenol and Uric acid at Nano Molar Level, Scientific Reports 9 (2019) 13250. https://doi.org/10.1038/s41598-019-49595-y
H. Vidya, B. E. K. Swamy, S. C. Sharma, G. K. Jayaprakash, S. A. Hariprasad, Effect of graphite oxide and exfoliated graphite oxide as a modifier for the voltametric determination of dopamine in presence of uric acid and folic acid, Scientific Reports 11 (2021) 24040. https://doi.org/10.1038/s41598-021-01328-w
E. Popa, Y. Kubota, D. A. Tryk, A. Fujishima, Selective Voltammetric and Amperometric Detection of Uric Acid with Oxidized Diamond Film Electrodes, Analytical Chemistry 72 (2000) 1724-1727. https://doi.org/10.1021/ac990862m
D. I. Feig, M. Mazzali, D. H. Kang, T. Nakagawa, K. Price, J. Kannelis, R. J. Johnson, Serum uric acid: A risk factor and a target for treatment?, Journal of the American Society of Nephrology 17 (2006) 69-73. https://doi.org/10.1681/ASN.2005121331
S. B Tanuja, B. E. K. Swamy and K. V. Pai, Electrochemical Response of Dopamine in Presence of Uric Acid at Pregabalin Modified Carbon Paste Electrode: A Cyclic Voltammetric Study, Journal of Analytical and Bioanalytical Techniques 7 (2016) 297. https://doi.org/10.4172/2155-9872.1000297
Y. Yang, M. Li, Z. Zhu, A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid, Talanta 201 (2019) 295-300. https://doi.org/10.1016/j.talanta.2019.03.096
K. S Chadchan, A. B Teradale, P. S Ganesh, S. N Das, Simultaneous sensing of mesalazine and folic acid at poly (murexide) modified glassy carbon electrode surface,Materials Chemistry and Physics 290 (2022) 126538. https://doi.org/10.1016/j.matchemphys.2022.126538
S. A. Kumar, C. F. Tang, S. M. Chen, Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine, Talanta 76 (2008) 997-1005. https://doi.org/10.1016/j.talanta.2008.04.057
M. Ławrywianiec, J. Smajdor, B. Paczosa-Bator, R. Piech, Application of a glassy carbon electrode modified with carbon black nanoparticles for highly sensitive voltammetric determination of quetiapine, Analytical Methods 9 (2017) 6662-6668. https://doi.org/10.1039/c7ay02140b
T. Kokab, A. Shah, J. Nisar, A. M. Khan, S. B. Khan, A. H. Shah, Tripeptide Derivative-Modified Glassy Carbon Electrode: A Novel Electrochemical Sensor for Sensitive and Selective Detection of Cd2+ Ions, ACS Omega 5 (2020) 10123-10132. https://doi.org/10.1021/acsomega.0c00760
V. Mani, M. Govindasamy, S. M. Chen, R. Karthik, S. T. Huang, Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers, Microchimica Acta 183 (2016) 2267-2275. https://doi.org/10.1007/s00604-016-1864-x
S. B. Khoo, F. Chen, Studies of sol-gel ceramic film incorporating methylene blue on glassy carbon: An electrocatalytic system for the simultaneous determination of ascorbic and uric acids, Analytical Chemistry 74 (2002) 5734-5741. https://doi.org/10.1021/ac0255882
O. E. Fayemi, A. S. Adekunle, B. E. K. Swamy, E. E. Ebenso, Electrochemical sensor for the detection of dopamine in real samples using polyaniline/NiO, ZnO, and Fe3O4 nanocomposites on glassy carbon electrode, Journal of Electroanalytical Chemistry 818 (2018) 236-249. https://doi.org/10.10 16/j.jelechem.2018.02.027
D. G. Dilgin, D. Gligor, H. I. Gökçel, Z. Dursun, Y. Dilgin, Glassy carbon electrode modified with poly-Neutral Red for photoelectrocatalytic oxidation of NADH, Microchimica Acta 173 (2011) 469-476. https://doi.org/10.1007/s00604-011-0582-7
M. Amare, S. Admassie, Potentiodynamic fabrication and characterization of poly(4-amino-3-hydroxynaphthalene sulfonic acid) modified glassy carbon electrode, Journal of Materials Research and Technology 9 (2020) 11484-11496. https://doi.org/10.1016/j.jmrt.2020.08.002
A. M. Abdel-Aziz, H. H. Hassan, I. H. A. Badr, Glassy Carbon Electrode Electromodification in the Presence of Organic Monomers: Electropolymerization versus Activation, Analytical Chemistry 92 (2020) 7947-7954. https://doi.org/10.1021/acs.analchem.0c01337
P. S. Ganesh, G. Shimoga, S. H. Lee, S. Y. Kim, E. E. Ebenso, Simultaneous electrochemical sensing of dihydroxy benzene isomers at cost-effective allura red polymeric film modified glassy carbon electrode, Journal of Analytical Science and Technology 12 (2021) 20. https://doi.org/10.1186/s40543-021-00270-w
R. Jerome, A. K. Sundramoorthy, Hydrothermal Synthesis of Boron Nitride Quantum Dots/Poly (Luminol) Nanocomposite for Selective Detection of Ascorbic Acid, Journal of The Electrochemical Society 166 (2019) B3017-B3024. https://doi.org/10.1149/2.0041909jes
N. Hareesha, J. G. Manjunatha, Electro-oxidation of formoterol fumarate on the surface of novel poly(thiazole yellow-G) layered multi-walled carbon nanotube paste electrode, Scientific Reports 11 (2021) 12797. https://doi.org/10.1038/s41598-021-92099-x
J. K. Shashikumara, B. Kalaburgi, B. E. K. Swamy, H. Nagabhushana, S. C. Sharma, P. Lalitha, Effect of RGO-Y2O3 and RGO-Y2O3:Cr3+ nanocomposite sensor for dopamine, Scientific Reports 11 (2021) 9372. https://doi.org/10.1038/s41598-021-87749-z
M. Amare, S. Admassie, Potentiodynamic fabrication and characterization of poly(4-amino-3-hydroxynaphthalene sulfonic acid) modified glassy carbon electrode, Journal of Materials Research and Technology 9 (2020) 11484-11496. https://doi.org/10.1016/j.jmrt.2020.08.002
N. Hareesha, J. G. Manjunatha, Fast and enhanced electrochemical sensing of dopamine at cost-effective poly(DL-phenylalanine) based graphite electrode, Journal of Electroanalytical Chemistry 878 (2020) 114533. https://doi.org/10.1016/j.jelechem.2020.114533
M. M. Charithra, J. G. G. Manjunatha, C. Raril, Surfactant modified graphite paste electrode as an electrochemical sensor for the enhanced voltammetric detection of estriol with dopamine and uric acid, Advanced Pharmaceutical Bulletin 10 (2020) 247-253. https://doi.org/10.34172/apb.2020.029
J. G. Manjunatha, Surfactant modified carbon nanotube paste electrode for the sensitive determination of mitoxantrone anticancer drug, Journal of Electrochemical Science and Engineering 7 (2017) 39-49. https://doi.org/10.5599/jese.368
E. Miland, A. Mirandaordieres, P. Tunonblanco, M. Smyth, C. Fagain, Poly(-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid, Talanta 43 (1996) 785-796. https://doi.org/10.1016/0039-9140(95)01825-5
L.S. Manjunatha, B.E.K. Swamy, Carbon paste-glibanclamide-graphene oxide modified electrode analysis for dopamine, Chemical Data Collections 53 (2024) 101157. https://doi.org/10.1016/j.cdc.2024.101157
J. Wang, B. Yang, J. Zhong, B. Yan, K. Zhang, C. Zhai, Y. Shiraishi, Y. Du, P. Yang, Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite, Journal of Colloid and Interface Science 497 (2017) 172-180. https://doi.org/10.1016/j.jcis.2017.03.011
L. Zhang, X. Lin, Covalent modification of glassy carbon electrode with glutamic acid for simultaneous determination of uric acid and ascorbic acid, Analyst 126 (2001) 367-370. https://doi.org/10.1039/b009415n
T. K. Aparna, R. Sivasubramanian, M. A. Dar, One-pot synthesis of Au-Cu2O/rGOnanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid, Journal of Alloys and Compounds 741 (2018) 1130-1141. https://doi.org/10.1016/j.jallcom.2018.01.205
C. Wang, J. Li, K. Shi, Q. Wang, X. Zhao, Z. Xiong, X. Zou, Y. Wang, Graphene coated by polydopamine/multi-walled carbon nanotubes modified electrode for highly selective detection of dopamine and uric acid in the presence of ascorbic acid, Journal of Electro-analytical Chemistry 770 (2016) 56-61. https://doi.org/10.1016/j.jelechem.2016.03.038
S. Qi, B. Zhao, H. Tang, X. Jiang, Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene, Electrochimica Acta C 161 (2015) 395-402. https://doi.org/10.1016/J.ELECTACTA.2015.02.116
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.