Staircase voltammetry of dissolved redox couple in a thin layer twin electrode cell

  • Milivoj Lovrić Divkovićeva 13, Zagreb 10090
Keywords: Staircase voltammetry, Thin layer cell, Migration, Theory


A model of reversible and quasi-reversible electrode reaction of dissolved redox couple is developed for the staircase voltammetry and the twin electrode thin layer cell. It is assumed that the neutral molecule is oxidized to a monovalent cation. The calculations were performed for the absence of supporting electrolyte and for its various concentrations. The influence of migration of cations and of IRΩ drop on the peak currents and peak potentials was investigated. Also, the kinetically controlled electrode reactions were simulated. These reactions can be distinguished from the reactions influenced by the resistance in the solution.


Download data is not yet available.


N. P. C. Stevens, A. M. Bond, Journal of Electroanalytical Chemistry 538 – 539 (2002) 25-33.

W. Hyk, A. Nowicka, Z. Stojek, Analytical Chemistry 74 (2002) 149-157.

K. B. Oldham, Journal of Physical Chemistry B 104 (2000) 4703-4706.

J. C. Myland, K. B. Oldham, Electrochemistry Communications 1 (1999) 467-471.

G. A. Tsirlina, Journal of Solid State Electrochemistry 21 (2017) 1833-1845.

E. J. F. Dickinson, J. G. Limon-Petersen, N. V. Rees, R. G. Compton, Journal of Physical Chemistry C 113 (2009) 11157-11171.

I. Streeter, R. G. Compton, Journal of Physical Chemistry C 112 (2008) 13716-13728.

K. Aoki, Electroanalysis 5 (1993) 627-639.

N. P. C. Stevens, M. B. Rooney, A. M. Bond, S. W. Feldberg, Journal of Physical Chemistry A 105 (2001) 9085-9093.

V. M. Volgin, A. D. Davydov, Electrochimica Acta 259 (2018) 56-65.

A. T. Hubbard, F. C. Anson, Analytical Chemistry 36 (1964) 723-726.

C. R. Christiansen, F. C. Anson, Analytical Chemistry 35 (1963) 205-209.

D. M. Oglesby, S. H. Omang, C. N. Reilley, Analytical Chemistry 37 (1965) 1312-1316.

I. B. Goldberg, A. J. Bard, Journal of Electroanalytical Chemistry 38 (1972) 313-322.

J. M. Saveant, Journal of Electroanalytical Chemistry 238 (1987) 1-8.

C. N. Reilley, B. McDuffie, Analytical Chemistry 38 (1966) 1881-1887.

J. C. Jernigan, C. E. Chidsey, R. W. Murray, Journal of American Chemical Society 107 (1985) 2824-2826.

B. J. Feldman, A. G. Ewing, R. W. Murray, Journal of Electroanalytical Chemistry 194 (1985) 63-81.

Š. Komorsky-Lovrić, M. Lovrić, Croatica Chemica Acta 64 (1991) 625-635.

H. S. White, K. McKelvey, Current Opinion in Electrochemistry 7 (2018) 48-53.

T. R. L. C. Paixao, E. M. Richter, J. G. A. Brito-Neto, M. Bertotti, Journal of Electroanalytical Chemistry 596 (2006) 101-108.

C. Montella, Journal of Electroanalytical Chemistry 808 (2018) 348-361.

A. W. Bott, Current Separations 16 (1997) 23-26.

M. Lovrić, Š. Komorsky-Lovrić, To Chemistry Journal 1 (2018) 370-375.

C. Batchelor-McAuley, E. Katelhon, E. O. Barnes, R. G. Compton. E. Laborda, A. Molina, ChemistryOpen 4 (2015) 224-260.

C. Batchelor-McAuley, M. Yang, E. M. Hall, R. G. Compton, Journal of Electroanalytical Chemistry 758 (2015) 1-6.

A. Molina, J. Gonzalez, Pulse Voltammetry in Physical Electrochemistry and Electroanalysis, Springer, Berlin, 2016.

N. G. Connelly, W. E. Geiger, Chemical Reviews 96 (1996) 877-910.

D. Britz, J. Strutwolf, Digital Simulation in Electrochemistry, Springer, Berlin, Germany, 2016.

Electrochemical Science