An improved method of water electrolysis – effect of complexing agent

  • Seetharaman Swaminathan Centre for Fuel Cell Technology, International Advanced research Centre for Powder Metallurgy and New Materials( ARCI), II Floor, IIT-M Research Park, No.6 Kanagam road, Taramani, Chennai – 600 113, and Department of Chemical Engineering, A.C. College of Technology, Anna University, Chennai-600 025
  • Balaji Rengarajan Centre for Fuel Cell Technology, International Advanced research Centre for Powder Metallurgy and New Materials( ARCI), Taramani, Chennai – 600 113
  • Ramya Krishnan Centre for Fuel Cell Technology, International Advanced research Centre for Powder Metallurgy and New Materials( ARCI), Taramani, Chennai – 600 113
  • Kaveripatnam Samban Dhathathreyan Centre for Fuel Cell Technology, International Advanced research Centre for Powder Metallurgy and New Materials( ARCI), Taramani, Chennai – 600 113
  • Manickam Velan Department of Chemical Engineering, A.C. College of Technology, Anna University, Chennai-600 025
Keywords: Citric acid, Alkaline water electrolysis, Oxygen evolution reaction, Complexing agent

Abstract

The present work investigates the efficiency of an alkaline water electrolysis process in the presence of a complexing agent like citric acid (CA) when added directly into the electrolyte during the electrolytic process. High surface area nickel electrodes prepared by electrodeposition technique were used as the electrode to evaluate the efficiency of the oxygen evolution reaction (OER) by the polarization measurements and cyclic voltammetry. The quantity of the complexing agent CA in the electrolyte was varied from 0-1 wt. %. An increase in the current density of about 25% resulted at a temperature of 30 °C in the presence of 0.2 wt. % of CA at 1.0 V vs. Hg/HgO. CA was found to improve performance by forming a complex with the alloy electrode and by formation of the high surface area catalyst for efficient OER.

Downloads

Download data is not yet available.

References

E. Rasten, G. Hagen, R. Tunold, Electrochim Acta 48 (2003) 3945-3952.

P. Millet, D. Dragoe, S. Grigoriev ,V. Fateev , C. Etievant, Int.J. Hydrogen energy 34 (2009) 4974-82.

S.P.S. Badwal , S. Giddey , F. T. Ciacchi, Ionics 12 (2006) 7-14

J. Panek ,A. Budniok, Surf. Interface Anal. 40 (2008) 237-41.

A.A.Kamnev, B.B.Ezhov, V. Rusanov, V.Angelov, Surf. Interface Anal. 19(1992) 577-580.

P.W.T. Lu, S. Srinivasan, J. Electrochem. Soc. 125 (1978) 1416-22.

G. Zhang, Y. Qiu, X.Yang, X.i Li, H. Pan, Desalination and Water Treatment 56 (2015) 905-911.

G.Sheela, M. Pushpavanam ,S. Pushpavanam, Int J Hydrogen Energy 27 (2002)627-633.

M.S.Sadovnikova, V.M. Belikov, Russ. Chem. Rev. 47 (1978) 199-212.

B.H.Chen,L. Hong, Y. Ma,T.M. Ko, Ind. Eng. Chem. Res., 41 (2002) 2668-78.

V.C. Kieling, Surface and Coatings Technology, 96 (1997) 135–139.

Q. Mao, L. Zhang, D. Huang , D. Wang, Y.Huang, H. Xu, H. Cao, Z. Mao, Surf. Interface Anal. 43(2011) 903-12.

I.G. Casella , M. Gatta, Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions, J. Electroanal. Chem. 534 (2002) 31–38

V.M. Nikolic, G.S. Tasic, A.D. Maksic, D.P.Saponjic, S.M. Miulovic, M.P.M. Kaninshi, Int. J. Hydrogen Energy 35(2010) 12369-73.

M.P.M.Kaninski, A.D. Maksic, D.L Stojic, S.C. Miljanic, J Power Sour. 131 (2004) 107-11.

S.M. Miulovic, S.L. Maslovera, M.M. Seovic, B.B. Raduk, M.P.M. Kaninski, Int. J. Hydrogen Energy 37(2012) 16770-75.

S.Seetharaman, R. Balaji, K. Ramya, K.S. Dhathathreyan, M. Velan, Ionics, 20 (2014) 713-20.

A.Seghiover, J. Chevalet, A. Barhoun, F. Lantelme, J. Electroanal Chem. 442(1998)113-23.

M.C.Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C.Smart,Surf. Interface Anal. 41(2009) 324-32.

U. Lacnjevac, B.M. Jovic, V.D.Jovic, Electrochim. Acta. 55(2009) 535-43.

O. Gyliene, J. Aikaite, O. Nivinskiene Journal of Hazardous Materials 109(2004) 105-111.

Published
30-09-2016
Section
Electrochemical Engineering