Influence of inevitable hydrogen evolution reaction on morphology of electrodeposited zinc
Original scientific paper
DOI:
https://doi.org/10.5599/jese.3191Keywords:
Electrodeposition, dendrite, crystals, holes, coalescence, SEM imagesAbstract
Influence of parallel hydrogen evolution reaction (HER) on morphology of zinc electrodeposits has been investigated. Zn was electrodeposited potentiostatically from the alkaline electrolyte at overpotentials both inside and outside the plateau of the limiting diffusion current density, and scanning electron microscopy (SEM) was used to characterize the resulting deposits. Holes originating from detached hydrogen bubbles were formed among the branchy, fern-like dendrites at overpotentials outside the plateau of the limiting diffusion current density, while HER was not detected at the overpotential inside the plateau. The overpotential of electrodeposition had no significant effect on the amount of hydrogen produced (the HER current efficiency was in the 17.7-19.1 % range), but it did affect the hole size. Depending on the overpotential of the electrodeposition, the size of holes was from several to about 100 mm, including those obtained by a coalescence of neighbouring hydrogen bubbles, and decreased with the increasing overpotential. The absence of inhibition of dendritic growth in spite of a high value of evolved hydrogen was attributed to Zn, which belongs to the group of normal metals characterized by high values of both the exchange current density and the overpotential for hydrogen evolution.
Downloads
References
[1] Y. Zuo, K. Wang, P. Pei, M. Wei, X. Liu, Y. Xiao, P. Zhang, Zinc dendrite growth and inhibition strategies, Materials Today Energy20 (2021) 100692. https://doi.org/10.1016/j.mtener.2021.100692 DOI: https://doi.org/10.1016/j.mtener.2021.100692
[2] Z. Mandić, G. Mihalinec, X. Xin, M. Zhou, S. Burazer, Can the development of batteries keep pace with the ever-increasing demands of consumers?, Journal of Electrochemical Science and Engineering15 (2025) 3120. https://doi.org/10.5599/jese.3120 DOI: https://doi.org/10.5599/jese.3120
[3] F. X. Xie, L. Zhang, C. Ye, M. Jaroniec, S. Z. Qiao, The application of hollow structured anodes for sodium-ion batteries: from simple to complex systems, Advanced Materials31 (2019) 1800492. https://doi.org/10.1002/adma.201800492 DOI: https://doi.org/10.1002/adma.201800492
[4] D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah, L. F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nature Energy1 (2016) 16119. https://doi.org/10.1038/nenergy.2016.119 DOI: https://doi.org/10.1038/nenergy.2016.119
[5] S. Liu, J. J. Hu, N. F. Yan, G. L. Pan, G. R. Li, X. P. Gao, Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries, Energy & Environmental Science5 (2012) 9743-9746. https://doi.org/10.1039/C2EE22987K DOI: https://doi.org/10.1039/c2ee22987k
[6] B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery, Advanced Materials29 (2017) 1700519. https://doi.org/10.1002/adma.201700519 DOI: https://doi.org/10.1002/adma.201700519
[7] Y. Liu, L. Li, X. Ji, S. Cheng, Scientific Challenges and Improvement Strategies of Zn-Based Anodes for Aqueous Zn-Ion Batteries, The Chemical Record22 (2022) e202200114. https://doi.org/10.1002/tcr.202200114. DOI: https://doi.org/10.1002/tcr.202200114
[8] C. Li, L. Wang, J. Zhang, D. Zhang, J.Du,Y. Yao, G. Hon, Roadmap on the protective strategies of zinc anodes in aqueous electrolyte, Energy Storage Materials44 (2022) 104-135. https://doi.org/10.1016/j.ensm.2021.10.020 DOI: https://doi.org/10.1016/j.ensm.2021.10.020
[9] C. Wang, J. Li, Z. Zhou, Y. Pan, Z. Yu, Z. Pei, S. Zhao, L. Wei, Y. Chen, Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects, EnergyChem3 (2021) 100055. https://doi.org/10.1016/j.enchem.2021.100055 DOI: https://doi.org/10.1016/j.enchem.2021.100055
[10] F. W. Thomas Goh, Z. Liu, T. S. Andy Hor, J. Zhang, X. Ge, Y. Zong, A. Yu, W. Khoo, A Near-Neutral Chloride Electrolyte for Electrically Rechargeable Zinc-Air Batteries, Journal of The Electrochemical Society161 (2014) A2080. https://doi.org/10.1149/2.0311414jes DOI: https://doi.org/10.1149/2.0311414jes
[11] J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, Z. Guo, Designing Dendrite-Free Zinc Anodes for Advanced Aqueous Zinc Batteries, Advanced Functional Materials30 (2020) 2001263. https://doi.org/10.1002/adfm.202001263 DOI: https://doi.org/10.1002/adfm.202001263
[12] X. Zheng, T. Ahmad, W. Chen, Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries, Energy Storage Materials39 (2021) 365-394. https://doi.org/10.1016/j.ensm.2021.04.027 DOI: https://doi.org/10.1016/j.ensm.2021.04.027
[13] X. Wang, C. Sun, Z.-S. Wu, Recent progress of dendrite-free stable zinc anodes for advanced zinc-based rechargeable batteries: Fundamentals, challenges, and perspectives, SusMat3 (2023) 180-206. https://doi.org/10.1002/sus2.118 DOI: https://doi.org/10.1002/sus2.118
[14] N. Zdolšek, G. Mihalinec, F. Radovanović-Perić, D. Mikić, A. Dimitrijević, M. Kraljić Roković, Choline-based ionic liquid electrolyte additives for suppression of dendrite growth in Zn-ion batteries, Journal of Electroanalytical Chemistry997 (2025) 119474. https://doi.org/10.1016/j.jelechem.2025.119474 DOI: https://doi.org/10.1016/j.jelechem.2025.119474
[15] J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, Z. Chen, Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives, Advanced Materials29 (2017) 1604685. https://doi.org/10.1002/adma.201604685 DOI: https://doi.org/10.1002/adma.201604685
[16] K. Wang, Solutions for Dendrite Growth of Electrodeposited Zinc, ACS Omega5 (2020) 10225-10227. https://doi.org/10.1021/acsomega.0c01485 DOI: https://doi.org/10.1021/acsomega.0c01485
[17] B. Li, X. Zhang, T. Wang, Z. He, B. Lu, S. Liang, J. Zhou, Interfacial engineering strategy for high-performance Zn metal anodes, Nano-Micro Letters14 (2021)6. https://doi.org/10.1007/s40820-021-00764-7 DOI: https://doi.org/10.1007/s40820-021-00764-7
[18] Y. Li, H. Dai, Recent advances in zinc-air batteries, Chemical Society Review43 (2014) 5257-5275. https://doi.org/10.1039/C4CS00015C DOI: https://doi.org/10.1039/C4CS00015C
[19] C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries, Energy & Environmental Materials3 (2020) 146-159. https://doi.org/10.1002/eem2.12067. DOI: https://doi.org/10.1002/eem2.12067
[20] K. Bogomolov, Y. Ein-Eli, Alkaline Ni-Zn Rechargeable Batteries for Sustainable Energy Storage: Battery Components, Deterioration Mechanisms, and Impact of Additives, ChemSusChem17 (2023) e202300940. https://doi.org/10.1002/cssc.202300940 DOI: https://doi.org/10.1002/cssc.202300940
[21] P. Pei, K. Wang, Z. Ma, Technologies for extending zinc-air battery’s cyclelife: A review, Applied Energy128 (2014) 315-324. https://doi.org/10.1016/j.apenergy.2014.04.095 DOI: https://doi.org/10.1016/j.apenergy.2014.04.095
[22] K. I. Popov, S. S. Djokić, N. D. Nikolić, V. D. Jović, Morphology of Electrochemically and Chemically Deposited Metals, Springer, New York, NY, USA, 2016. https://doi.org/10.1007/978-3-319-26073-0 DOI: https://doi.org/10.1007/978-3-319-26073-0
[23] N. D. Nikolić, P. M. Živković, J. D. Lović, G. Branković, Application of the general theory of disperse deposits formation in an investigation of mechanism of zinc electrodeposition from the alkaline electrolytes, Journal of Electroanalytical Chemistry785 (2017) 65-74. https://doi.org/10.1016/j.jelechem.2016.12.024 DOI: https://doi.org/10.1016/j.jelechem.2016.12.024
[24] V. S. Nikitin, T. N. Ostanina, V. M. Rudoi, T. S. Kuloshvili, A. B. Darintseva, Features of Hydrogen Evolution during Electrodeposition of Loose Deposits of Copper, Nickel and Zinc, Journal of Electroanalytical Chemistry870 (2020) 114230. https://doi.org/10.1016/j.jelechem.2020.114230 DOI: https://doi.org/10.1016/j.jelechem.2020.114230
[25] T. N. Ostanina, V. M. Rudoi, V. S. Nikitin, A. B. Darintseva, S. L. Demakov, Change in the physical characteristics of the dendritic zinc deposits in the stationary and pulsating electrolysis, Journal of Electroanalytical Chemistry784 (2017) 13-24. https://doi.org/10.1016/j.jelechem.2016.11.063 DOI: https://doi.org/10.1016/j.jelechem.2016.11.063
[26] T. N. Ostanina, V. M. Rudoi, A. V. Patrushev, A. B. Darintseva, A. S. Farlenkov, Modelling the Dynamic Growth of Copper and Zinc Dendritic Deposits under the Galvanostatic Electrolysis Conditions, Journal of Electroanalytical Chemistry750(2015) 9-18. https://doi.org/10.1016/j.jelechem.2015.04.031 DOI: https://doi.org/10.1016/j.jelechem.2015.04.031
[27] N. D. Nikolić, J. D. Lović, V. M. Maksimović, N. S. Vuković, N. L. Ignjatović, P. M. Živković, S. I. Stevanović, Correlation Between Morphology and Crystal Structure of Electrolytically Produced Zinc Dendritic Particles, Metals14 (2024) 1468. https://doi.org/10.3390/met14121468 DOI: https://doi.org/10.3390/met14121468
[28] N. D. Nikolić, J. D. Lović, V. M. Maksimović, N. S. Vuković, P. M. Živković, The preferred orientation of electrodeposited dendrites of lead, tin and zinc, Journal of Electrochemical Science and Engineering15 (2025) 2671. https://doi.org/10.5599/jese.2671 DOI: https://doi.org/10.5599/jese.2671
[29] V. Jabbari, T. Foroozan, R. Shahbazian-Yassar, Dendritic Zn Deposition in Zinc-Metal Batteries and Mitigation Strategies, Advanced Energy & Sustainability Research2 (2021) 2000082. https://doi.org/10.1002/aesr.202000082 DOI: https://doi.org/10.1002/aesr.202000082
[30] S. J. Banik, R. Akolkar, Suppressing Dendritic Growth during Alkaline Zinc Electrodeposition using Polyethylenimine Additive, Electrochimica Acta179 (2015) 475-481. https://doi.org/10.1016/j.electacta.2014.12.100 DOI: https://doi.org/10.1016/j.electacta.2014.12.100
[31] J. W. Diggle, A. R. Despic, J. O' M. Bockris, Mechanism of dendritic electrocrystallization of zinc, Journal of The Electrochemical Society116 (1969) 1503-1514. DOI:10.1149/1.2411588 DOI: https://doi.org/10.1149/1.2411588
[32] M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, Y. Sawada, Fractal structures of zinc metal leaves grown by electrodeposition, Physical Review Letters53 (1984) 286. https://doi.org/10.1103/PhysRevLett.53.286 DOI: https://doi.org/10.1103/PhysRevLett.53.286
[33] A. A. Wheeler, B. T. Murray, R. J. Schaefer, Computation of dendrites using a phase field model, Physica D: Nonlinear Phenomena66 (1993) 243-262. https://doi.org/10.1016/0167-2789(93)90242-S DOI: https://doi.org/10.1016/0167-2789(93)90242-S
[34] D. A. Cogswell, Quantitative phase-field modeling of dendritic electrodeposition, Physical Review E92 (2015) 011301. https://doi.org/10.1103/PhysRevE.92.011301 DOI: https://doi.org/10.1103/PhysRevE.92.011301
[35] K. I. Popov, N. D. Nikolić, General Theory of Disperse Metal Electrodeposits Formation in Electrochemical Production of Metal Powders, Series: Modern Aspects of Electrochemistry, Volume 54, S.S. Djokić, Ed., Springer, New York, NY, USA, 2012, pp. 1-62. https://doi.org/10.1007/978-1-4614-2380-5_1 DOI: https://doi.org/10.1007/978-1-4614-2380-5_1
[36] J. Dundálek, I. Šnajdr, O. Libánský, J. Vrána, J. Pocedič, P. Mazúr, J. Kosek, Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction, Journal of Power Sources372 (2017) 221-226. https://doi.org/10.1016/j.jpowsour.2017.10.077 DOI: https://doi.org/10.1016/j.jpowsour.2017.10.077
[37] R. E. F. Einerhand, W. H. M. Visscher, E. Barendrecht, Hydrogen production during zinc deposition from alkaline zincate solutions, Journal of Applied Electrochemistry18 (1988) 799-806. https://doi.org/10.1007/BF01016034 DOI: https://doi.org/10.1007/BF01016034
[38] Y. He, Y. Liu, W. Shang, P. Tan, Hydrogen bubble evolution and its induced mass transfer on zinc electrodes in alkaline and neutral media, Nanoscale17 (2025) 8453-8465. https://doi.org/10.1039/D4NR05108D DOI: https://doi.org/10.1039/D4NR05108D
[39] P.-C. Hsu, S.-K. Seol, T.-N. Lo, C.-J. Liu, C.-L. Wang, C.-S. Lin, Y. Hwu, C. H. Chen, L.-W. Chang, J. H. Je, G. Margaritondo, Hydrogen Bubbles and the Growth Morphology of Ramified Zinc by Electrodeposition, Journal of The Electrochemical Society155 (2008) D400-D407. https://doi.org/10.1149/1.2894189 DOI: https://doi.org/10.1149/1.2894189
[40] B. Sharifi, M. Mojtahedi, M. Goodarzi, J. Vahdati Khaki, Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder, Hydrometallurgy99 (2009) 72-76. https://doi.org/10.1016/j.hydromet.2009.07.003 DOI: https://doi.org/10.1016/j.hydromet.2009.07.003
[41] H. Vogt, R. J. Balzer, The bubble coverage of gas-evolving electrodes in stagnant electrolytes, Electrochimica Acta50 (2005) 2073-2079. https://doi.org/10.1016/j.electacta.2004.09.025 DOI: https://doi.org/10.1016/j.electacta.2004.09.025
[42] N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, M. G. Pavlović, Phenomenology of a formation of a honeycomb - like structure during copper electrodeposition, Journal of Solid State Electrochemistry11 (2007) 667-675. https://doi.org/10.1007/s10008-006-0222-z DOI: https://doi.org/10.1007/s10008-006-0222-z
[43] L. J. J. Janssen, J. G. Hoogland, The effect of electrolytically evolved gas bubbles on the thickness of the diffusion layer, Electrochimica Acta15 (1970) 1013-1023. https://doi.org/10.1016/0013-4686(70)80041-X DOI: https://doi.org/10.1016/0013-4686(70)80041-X
[44] J. P. Glas, J. W. Westwater, Measurements of the growth of electrolytic bubbles, International Journal of Heat and Mass Transfer7 (1964) 1427-1430. https://doi.org/10.1016/0017-9310(64)90130-9 DOI: https://doi.org/10.1016/0017-9310(64)90130-9
[45] N. D. Nikolić, G. Branković, M. G. Pavlović, K. I. Popov, The effect of hydrogen codeposition on the morphology of copper electrodeposits. II. Correlation between the properties of electrolytic solutions and the quantity of evolved hydrogen, Journal of Electroanalytical Chemistry621 (2008) 13-21. https://doi.org/10.1016/j.jelechem.2008.04.006 DOI: https://doi.org/10.1016/j.jelechem.2008.04.006
[46] R. Winand, Electrodeposition of Metals and Alloys-New Results and Perspectives, Electrochimica Acta39 (1994) 1091-1105. https://doi.org/10.1016/0013-4686(94)E0023-S DOI: https://doi.org/10.1016/0013-4686(94)E0023-S
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Nebojša D. Nikolić, Jelena Lović, Nikola Vuković, Predrag Živković

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-136/2025-03/200026


