Influence of intensity of ultrasound on morphology and hardness of copper coatings obtained by electrodeposition

Original scientific paper

Authors

  • Ivana Mladenović University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11 000 Belgrade,Serbia https://orcid.org/0000-0002-6852-7541
  • Jelena Lamovec University of Criminal Investigation and Police Studies, Cara Dušana 196, Zemun, 11 000 Belgrade, Serbia https://orcid.org/0000-0002-2710-3937
  • Dana Vasiljević Radović University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11 000 Belgrade,Serbia https://orcid.org/0000-0002-7609-8599
  • Vesna Radojević University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11 000 Belgrade, Serbia
  • Nebojša D. Nikolić University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11 000 Belgrade,Serbia https://orcid.org/0000-0002-6385-5714

DOI:

https://doi.org/10.5599/jese.1290

Keywords:

Copper, topography, composite hardness model, surface characterization, atomic force microscopy, scanning electron microscopy
Graphical Abstract

Abstract

The influence of various intensities of ultrasound applied for the electrolyte stirring on morphological and mechanical characteristics of electrolytically produced copper coatings has been investigated. The copper coatings produced by the galvanostatic regime of the electrodeposition from the basic sulphate electrolyte and the electrolyte with added levelling/brightening additives at the low temperature were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques (surface morphology and topography, respectively) and by Vickers microindentation (hardness). The roughness of coatings increased with the increasing intensity of ultrasound, indicating that morphology of the coatings worsened with the enhanced application of ultrasonic waves. This is attributed to the strong effect of ultrasound on hydrodynamic conditions in the near-electrode layer, which is manifested by the increase of share of the activation control in the mixed activation-diffusion control of electrodeposition with increasing the intensity of ultrasound. The concept of "effective overpotential" originally proposed to explain a change of surface morphology in the conditions of vigorous hydrogen evolution is also applicable for a change of morphology of Cu coatings under the imposed effect of ultrasonic waves. Hardness analysis of the coatings showed that an intensity of applied ultrasound did not have any significant effect on the hardness, especially for the Cu coatings produced from the basic sulphate electrolyte.

Downloads

Download data is not yet available.

References

Copper plating service, https://www.sharrettsplating.com/coatings/copper (accessed on 27 September 2021).

N. Bharadishettar, U. K. Bhat, D. B. Panemangalore, Metals 11 (2021) 711. https://doi.org/10.3390/met11050711

Z. Tan, S. Liu, J. Wu, Z. Nan, F. Yang, D. Zhan, J. Yan, B. Mao, ChemElectroChem (2022) e202101412. https://doi.org/10.1002/celc.202101412.

K. I. Popov, S. S. Djokić, N. D. Nikolić, V. D. Jović. Morphology of Electrochemically and Chemically Deposited Metals, Springer International Publishing, New York, USA, 2016, https://doi.org/10.1007/978-3-319-26073-0.

N. D. Nikolić, G. Branković, M. G. Pavlović, Journal of Electrochemical Science and Engineering 2 (2012) 33-40. https://doi.org/10.5599/jese.2012.0009.

N. D. Nikolić, Journal of Electrochemical Science and Engineering 10 (2020) 111-126. http://dx.doi.org/10.5599/jese.707.

Y. H. Zhang, M. Z. An, P. X. Yang, J. Q. Zhang, Electrocatalysis 12 (2021) 619-627. https://doi.org/10.1007/s12678-021-00687-2.

R. Carpio, A. Jaworski, Journal of The Electrochemical Society 166 (2018) 3072-3096. https://doi.org/10.1149/2.0101901jes.

I. O. Mladenović, J. S. Lamovec, D. G. Vasiljević Radović, R. Vasilić, V. J. Radojević, N. D. Nikolić, Metals 10 (2020) 488. https://doi.org/10.3390/met10040488.

I. O. Mladenović, J. S. Lamovec, D. G. Vasiljević-Radović, R. Vasilić, V. J. Radojević, N. D. Nikolić, Metals 11 (2021) 1807. https://doi.org/10.3390/met11111807.

A. Tamilvanan, K. Balamurugan, K. Ponappa, B. Madhan Kumar, International Journal of Nanoscience 13 (2014) 1430001. https://doi.org/10.1142/S0219581X14300016.

L. Martins, J. Martins, A. Romeira, M. E. V. Costa, J. S. Costa, M. Bazzaoui, Materials Science Forum 455-456 (2004) 844-848 https://doi:10.4028/www.scientific.net/msf.455-456.844.

J. An, G. Xie, W. Xia, H. Wang, B. Ren, K. Liu, Powder Technology 386 (2021) 193-198. https://doi.org/10.1016/j.powtec.2021.03.034.

S. Derbal, M. Benaicha, Journal of Electronic Materials 50 (2021) 5134-5140. https://doi.org/10.1007/s11664-021-09057-6.

N. E. Tarolla, S. Voci, J. Reyes-Morales, A. D. Pendergast, J. E. Dick, Journal of Materials Chemistry A 9 (2021) 20048-20057. https://doi.org/10.1039/D1TA02369A.

F. A. Lowenheim, Modern Electroplating, 3rd Edition, Wiley-Interscience, New York, USA, 1974. ISBN 13: 978-0471549680

N. N. C. Isa, Y. Mohd, M. H. M. Zaki, S. A. S. Mohamad, International Journal of Electrochemical Science 12 (2017) 6010-6021 https://doi.org/10.20964/2017.07.58.

X. Liang, X. Ren, R. He, T. Ma, A. Liu, New Journal of Chemistry 45 (2021) 19655-19659. https://doi.org/10.1039/D1NJ03503G.

N. D. Nikolić, Z. Rakočević, K. I. Popov, Journal of Electroanalytical Chemistry 514 (2001) 56-66. https://doi.org/10.1016/S0022-0728(01)00626-X.

L. Bonou, M. Eyraud, R. Denoyel, Y. Massiani, Electrochimica Acta 47 (2002) 4139-4148. https://doi.org/10.1016/S0013-4686(02)00356-0

Q. Chen, Z. Wang, J. Cai, L. Lui, Microelectronic Engineering 87 (2010) 527-531. https://doi.org/10.1016/j.mee.2009.06.035

Y.-Q. Wang, X.-L. Fu, W.-L. Xu, M. Li, X.-X. Zhang, The Chinese Journal of Process Engineering 4 (2004) 305-309.

J. M. Costa, A. F. A. Neto, Ultrasonics Sonochemistry 68 (2020) 105193. https://doi.org/10.1016/j.ultsonch.2020.105193

H. Li, R.C. Bradt, Materials Science and Engineering: A 142 (1991) 51-61. https://doi.org/10.1016/0921-5093(91)90753-A

I. O. Mladenović, N. D. Nikolić, J. S. Lamovec, D. G. Vasiljević Radović, V. J. Radojević, Metals 11 (2021) 111. https://doi.org/10.3390/met11010111

J. Lesage, A. Pertuz, E. S. Puchi-Cabrera, D. Chicot, Thin Solid Films 497 (2006) 232-238. https://doi.org/10.1016/j.tsf.2005.09.194

J. Lesage, D. Chicot, Surface and Coatings Technology 200 (2005) 886-889. https://doi.org/10.1016/j.surfcoat.2005.01.056

D. Chicot, J. Lesage, Thin Solid Films 254 (1995) 123-130. https://doi.org/10.1016/0040-6090(94)06239-H

I. O. Mladenović, J. S. Lamovec, D. G. Vasiljević-Radović, V. J. Radojević, N. D. Nikolić, International Journal of Electrochemical Science 15 (2020) 12173-12191. http://dx.doi.org/10.20964/2020.12.01

N. D. Nikolić, Journal of the Serbian Chemical Society 72 (2007) 787-797 https://doi.org/10.2298/JSC0709787N

N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, M. G. Pavlović, Journal of Electroanalytical Chemistry 588 (2006) 88-98. https://doi.org/10.1016/j.jelechem.2005.12.006

I. O. Mladenović, J. S. Lamovec, D. G. Vasiljević-Radović, V. J. Radojević, N. D. Nikolić., Journal of the Serbian Chemical Society 87 (2022) 899-910 https://doi.org/10.2298/JSC211014105M

Published

27-02-2022

How to Cite

Mladenović, I., Lamovec, J., Vasiljević Radović, D., Radojević, V., & Nikolić, N. D. (2022). Influence of intensity of ultrasound on morphology and hardness of copper coatings obtained by electrodeposition: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(4), 603–615. https://doi.org/10.5599/jese.1290

Issue

Section

Coatings