Electrochemical corrosion performance of Si-doped Al-based automotive alloy in 0.1 M NaCl solution

Original scientific paper

  • Maglub Al Nur Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
  • Akib Abdullah Khan Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh https://orcid.org/0000-0001-9237-6408
  • Somlata Dev Sharma Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh https://orcid.org/0000-0002-8715-5253
  • Mohammad Salim Kaiser Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh https://orcid.org/0000-0002-3796-2209
Keywords: Al-Si automotive alloy, corrosion potential, polarization resistance, microstructure, protective oxide layer
Graphical Abstract

Abstract

The aim of this study is to investigate the electrochemical corrosion behavior of Al-Si automotive alloys with different levels of Si doping in 0.1 M NaCl solution at room temperature. The study was performed by electrochemical method, using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The condition of surfaces was characterized by both optical and scanning electron microscopy. Both the EIS and Tafel analyses revealed that the corrosion resistance was improved with the addition of Si up to the eutectic point due to the formation of protective oxide films. The higher Si added alloys showed lower values of current density, while the corrosion potential was shifted to a more positive direction. For higher Si added alloys, a higher amount of Mg2Si was formed as precipitates, which tend to form oxides such as SiO2 and MgO, further protecting the surfaces from corrosion. It can be observed from the micrographs that the scratches from polishing are removed after corrosion. Additionally, the SEM images reveal that corroded surfaces appear to have pits that are less noticeable in alloys with a greater Si content, suggesting thus the formation of a protective layer of oxides.

Downloads

Download data is not yet available.

References

S. Samat, M. Z. Omar, A. H. Baghdadi, I. F. Mohamed, A. M. Aziz, Journal of Materials Research and Technology 10 (2021) 1086-1102. https://dx.doi.org/10.1016/j.jmrt.2020.12.085

H. Ye, Journal of Materials Engineering and Performance 12 (2003) 288-297. https://dx.doi.org/10.1361/105994903770343132

M. Guo, M. Sun, J. Huang, S. Pang, Metals 12 (2022) 142. https://dx.doi.org/10.3390/met12010142

L. F. Gomes, C. L. Kugelmeier, A. Garcia, C. A. Della Rovere, J. E. Spinelli, Journal of Materials Research and Technology 15 (2021) 5880-5893. https://dx.doi.org/10.1016/j.jmrt.2021.11.043

W.. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Materials Science and Engineering: A 280 (2000) 37-49. https://dx.doi.org/10.1016/S0921-5093(99)00653-X

T. Tanaka, T. Akasawa, Journal of Materials Engineering and Performance 8 (1999) 463-468. https://dx.doi.org/10.1361/105994999770346774

P. R. Goulart, J. E. Spinelli, W. R. Osório, A. Garcia, Materials Science and Engineering: A 421 (2006) 245-253. https://dx.doi.org/10.1016/j.msea.2006.01.050

S. Tahamtan, A. Fadavi Boostani, Transactions of Nonferrous Metals Society of China 20 (2010) 1702-1706. https://dx.doi.org/10.1016/S1003-6326(09)60361-7

M. Haghshenas, J. Jamali, Case Studies in Engineering Failure Analysis 8 (2017) 11-20. https://dx.doi.org/10.1016/j.csefa.2016.11.003

F. Alshmri, Advanced Materials Research 774–776 (2013) 1271-1276. https://dx.doi.org/10.4028/www.scientific.net/AMR.774-776.1271

H. Torabian, J. P. Pathak, S. N. Tiwari, Wear 172 (1994) 49-58. https://dx.doi.org/10.1016/0043-1648(94)90298-4

A. Schüssler, H. E. Exner, Corrosion Science 34 (1993) 1793-1802. https://dx.doi.org/10.1016/0010-938X(93)90017-B

R. Escalera-Lozano, M. I. Pech-Canul, M. A. Pech-Canul, M. Montoya-Davila, A. Uribe-Salas, The Open Corrosion Journal 3 (2010) 73-79. https://dx.doi.org/10.2174/1876503301003010073

L. Wen, Y. Wang, Y. Zhou, L. X. Guo, J. H. Ouyang, Materials Chemistry and Physics 126 (2011) 301-309. https://dx.doi.org/10.1016/j.matchemphys.2010.11.022

M. D. Cardenas Almena, O. Lucio Esperilla, F. Martin Manzanero, Y. Murillo Duarte, L. C. Quintero Toscano, G. Wolff, SAE Technical paper 2012-01-1689, 2012. https://dx.doi.org/10.4271/2012-01-1689

J. Barker, S. Cook, P. Richards, SAE International Journal of Fuels and Lubricants 6 (2013) 826-838. https://dx.doi.org/10.4271/2013-01-2687

A. Abdel-Wahab, B. Batchelor, Water Environment Research 74 (2002) 256-263. https://dx.doi.org/10.2175/106143002X139983

P. Marcus, Corrosion Mechanism in Theory and Practice, J. Oudar (Ed.), Marcel Dekker, New York, 1995. ISBN-10: 082479592X

E. S. M. Sherif, International Journal of Electrochemical Science 7 (2012) 4235-4249. http://www.electrochemsci.org/papers/vol7/7054235.pdf

S. Toschi, Metals 8 (2018) 961. https://dx.doi.org/10.3390/met8110961

M. S. Kaiser, M. R. Basher, A. S. W. Kurny, Journal of Materials Engineering and Performance 21 (2012) 1504-1508. https://dx.doi.org/10.1007/s11665-011-0057-3

S. Choudhary, A. Garg, K. Mondal, Journal of Materials Engineering and Performance 25 (2016) 2969-2976. https://dx.doi.org/10.1007/s11665-016-2112-6

A. Hossain, M.A. Gafur, F. Gulshan, A.S.W. Kurny, International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering 8 (2014) 719-723.

A. S. Fouda, F. S. Mohamed, M. W. El-Sherbeni, Journal of Bio- and Tribo-Corrosion 2 (2016) 11. https://dx.doi.org/10.1007/s40735-016-0039-y

J. Bessone, C. Mayer, K. Jüttner, W. J. Lorenz, Electrochimica Acta 28 (1983) 171-175. https://dx.doi.org/10.1016/0013-4686(83)85105-6

X. Li, S. Deng, H. Fu, G. Mu, Corrosion Science 51 (2009) 620-634. https://dx.doi.org/10.1016/j.corsci.2008.12.021

J. Cruz, T. Pandiyan, E. García-Ochoa, Journal of Electroanalytical Chemistry 583 (2005) 8-16. https://dx.doi.org/10.1016/j.jelechem.2005.02.026

W. A. W. E. Amira, A. A. Rahim, H. Osman, K. Awang, P.B. Raja, International Journal of Electrochemical Science 6 (2011) 2998-3016. https://dx.doi.org/10.1.1.655.3240

X. G. Zhang, Corrosion Potential and Corrosion Current in: Corrosion and Electrochemistry of Zinc, Springer US, Boston, MA, 1996, pp. 125-156. https://dx.doi.org/10.1007/978-1-4757-9877-7_5.

C. Kim, S. Cho, W. Yang, A. I. Karayan, H. Castaneda, Corrosion Science 183 (2021) 109339. https://dx.doi.org/10.1016/j.corsci.2021.109339

L. Dosdat, J. Petitjean, T. Vietoris, O. Clauzeau, Steel Research International 82 (2011) 726-733. https://dx.doi.org/10.1002/srin.201000291

E. Billur, Hot Stamping of Ultra High-Strength Steels, Springer International Publishing, Cham, 2019. https://dx.doi.org/10.1007/978-3-319-98870-2

Y.-Y. Chang, C.-C. Tsaur, J.C. Rock, Surface and Coatings Technology 200 (2006) 6588-6593. https://dx.doi.org/10.1016/j.surfcoat.2005.11.038

M. Abdallah, E. M. Kamar, S. Eid, A. Y. El-Etre, Journal of Molecular Liquids 220 (2016) 755-761. https://dx.doi.org/10.1016/j.molliq.2016.04.062

F. Eckermann, T. Suter, P. J. Uggowitzer, A. Afseth, P. Schmutz, Electrochimica Acta 54 (2008) 844-855. https://dx.doi.org/10.1016/j.electacta.2008.05.078

R. I. Revilla, J. Liang, S. Godet, I. De Graeve, Journal of The Electrochemical Society 164 (2017) C27-C35. https://dx.doi.org/10.1149/2.0461702jes

I.-W. Huang, B. L. Hurley, F. Yang, R.G. Buchheit, Electrochimica Acta 199 (2016) 242-253. https://dx.doi.org/10.1016/j.electacta.2016.03.125

G. Šekularac, I. Milošev, Corrosion Science 144 (2018) 54-73. https://dx.doi.org/10.1016/j.corsci.2018.08.038

M. G. Mueller, M. Fornabaio, A. Mortensen, Journal of Materials Science 52 (2017) 858-868. https://dx.doi.org/10.1007/s10853-016-0381-y

Published
13-06-2022
Section
Electrochemical Engineering