Electrodeposition of strictly alpha,alpha’-polythiophene chains on oxidizable metals in acidic concentrated aqueous media

Original scientific paper


  • Mimouna Bouabdallaoui Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco https://orcid.org/0000-0001-9170-7877
  • Zaynab Aouzal Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco
  • Abdel Qader El Guerraf Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco https://orcid.org/0000-0002-5221-8656
  • Mohammed Bazzaoui Materials and Environmental Laboratory, Faculty of Sciences, Ibn Zohr University, 80000 Agadir, Morocco
  • El Arbi Bazzaoui Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco




Electropolymerization, polythiophene, aqueous acidic media, oxidizable metals, vibrational and elemental analyses
Graphical Abstract


Electropolymerization of thiophene was performed in aqueous acidic media on various substrates, namely, titanium, nickel and SS steel. The films were successfully elaborated using voltamperometric, chronopotentiometric and chronoamperometric techniques. It was shown that concentrated acids increase the solubility of the monomer, lower its oxidation potential and inhibit the dissolution of the working electrode. Furthermore, the electrosynthesized polythiophene (PT) films are homogeneous and present similar properties to those obtained in organic media. On the other hand, analyses by X-ray photoelectron and infrared spectroscopies indicate the higher oxidation state of the polymers and the contribution of the supporting electrolyte in the doping process. In addition, IR spectra have demonstrated the strictly a, a’ linked polythiophene chains and an estimated degree of polymerization (DP) of about 40. Finally, scanning electron microscopy (SEM) has been used to characterize the morphology of the obtained coating. In this context, the nature of the films depends closely on the type of the electrode, the electrosynthesized mode and the electrolytic medium.


Download data is not yet available.


R. L. Elsenbaumer, K. Y. Jen, G. G. Miller, L. W. Shacklette, Synthetic Metals 18(1-3) (1987) 277-282. https://doi.org/10.1016/0379-6779(87)90892-7

S. Lee, D. C. Borrelli, W. J. Jo, A. S. Reed, K. K. Gleason, Advanced Materials Interfaces 5(9) (2018) 1701513. https://doi.org/10.1002/admi.201701513

S. Iqbal, H. Khatoon, R. K. Kotnala, S. Ahmad, Journal of Materials Science 55(33) (2020) 15894-15907. https://doi.org/10.1007/s10853-020-05134-z

Y. Furukawa, M. Akimoto, I. Harada, Synthetic Metals 18(1-3) (1987) 151-156. https://doi.org/10.1016/0379-6779(87)90870-8

R. Kroon, D. Kiefer, D. Stegerer, L. Yu, M. Sommer, C. Müller, Advanced Materials 29(24) (2017) 1700930. https://doi.org/10.1002/adma.201700930

G. Cao, H. Cui, L. Wang, T. Wang, Y. Tian, ACS Applied Electronic Materials 2(9) (2020) 2750-2759. https://doi.org/10.1021/acsaelm.0c00457

J. W. Van der Horst, P. A. Bobbert, M. A. J. Michels, G. Brocks, P. J. Kelly, Physical Review Letters 83(21) (1999) 4413-4416. https://doi.org/10.1103/PhysRevLett.83.4413

A. Portone, L. Ganzer, F. Branchi, R. Ramos, M. J. Caldas, D. Pisignano, Scientific Reports 9(1) (2019)

-10. https://doi.org/10.1038/s41598-019-43719-0

J. Kerfoot, S. A. Svatek, V. V. Korolkov, T. Taniguchi, K. Watanabe, E. Antolin, P. H. Beton, ACS Nano 14(10) (2020) 13886-13893. https://doi.org/10.1021/acsnano.0c06280

R. Schaffrinna, M. Schwager, Materials Research Innovations 25(1) (2021) 23-28. https://doi.org/10.1080/14328917.2020.1728485

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. De Leeuw, Nature 401(6754) (1999) 685-688. https://doi.org/10.1038/44359

R. B. Ambade, S. B. Ambade, N. K. Shrestha, R. R. Salunkhe, W. Lee, S. S. Bagde, J. H. Kim, F. J. Stadler, Y. Yamauchi, S. H. Lee, Journal of Materials Chemistry A 5(1) (2017) 172-180. https://doi.org/10.1039/c6ta08038c

Z. F. Yao, J. Y. Wang, J. Pei, Chemical Science 12(4) (2021) 1193-1205. https://doi.org/10.1039/d0sc06497a

M. A. Ramírez-Gómez, K. K. Guzmán-Rabadán, E. Gonzalez-Juarez, M. Güizado-Rodríguez, G. Ramos-Ortiz, J. E. Alba-Rosales, H. Panzo-Medrano, V. Barba, M. Rodríguez, J. L. Maldonado, M. Á. Basurto-Pensado, International Journal of Polymer Science 2017 (2017) 1918602. https://doi.org/10.1155/2017/1918602

P. J. Sephra, P. Baraneedharan, A. Arulraj, Nanoelectronics devices (field-effect transistors, electrochromic devices, light-emitting diodes, dielectrics, neurotransmitters) in Advances in Hybrid Conducting Polymer Technology, S. Shahabuddin, A. K. Pandey, M. Khalid, P. Jagadish, Eds.. Springer Nature, Switzerland; 2021. pp. 77-100. ISBN 978-3-030-62090-5

S. Glenis, G. Horowitz, G. Tourillon, F. Garnier, Thin Solid Films 111 (1984) 93-103. https://doi.org/10.1016/0040-6090(84)90478-4

Y. Kim, Nat. Mater. 5 (2006) 197-203. https://doi.org/10.1038/nmat1574

S. Y. Kim, K. H. Lee, B. D. Chin, J.W. Yu, Sol. Solar Energy Materials and Solar Cells 93(1) (2009) 129-135. https://doi.org/10.1016/j.solmat.2008.09.005

P. Kumar, K. Ranjith, S. Gupta, P. C. Ramamurthy, Electrochimica Acta, 56(24) (2011) 8184-8191. https://doi.org/10.1016/J.ELECTACTA.2011.06.114

K. Kaneto, K. Yoshino, Y. Inuishi, Japanese Journal of Applied Physics 22(7) (1983) L412-L414. https://doi.org/10.1143/JJAP.22.L412

T. A. Welsh, E. R. Draper, RSC Advance 11(9) (2021) 5245-5264. https://doi.org/10.1039/D0RA10346B

A. S. Rad, Journal of Molecular Modeling 21(11) (2015) 285. https://doi.org/10.1007/s00894-015-2832-9

X. Wang, Y. Zheng, L. Xu, Sensors Actuators, B Chem. 255 (2018) 2952-2958. https://doi.org/10.1016/j.snb.2017.09.116

B. H. Barboza, O. P. Gomes, A. Batagin-Neto, Journal of Molecular Modeling 27(1) 20211-13. https://doi.org/10.1007/s00894-020-04632-w

Y. Tao, H. Cheng, Z. Zhang, X. Xu, Y. Zhou, Journal of Electroanalytical Chemistry 689 (2013) 142-148. https://doi.org/10.1016/j.jelechem.2012.10.033

C. Zhang, C. Hua, G. Wang, M. Ouyang, C. Ma, Journal of Electroanalytical Chemistry 645(1) (2010) 50-57. https://doi.org/10.1016/j.jelechem.2010.04.009

T. Yamamoto, T. Yasuda, Y. Sakai, S. Aramaki, Macromolecular Rapid Communications 26(15) (2005) 1214-1217. https://doi.org/10.1002/marc.200500276

E. A. Bazzaoui, G. Lévi, S. Aeiyach, J. Aubard, J. P. Marsault, P. C. Lacaze, J. Phys. Chem. 99(17) (1995) 6628-6634. https://doi.org/10.1021/j100017a052

M. A. del Valle, P. Cury, R. Schrebler, Electrochimica Acta 48(4) (2002) 397-405. https://doi.org/10.1016/S0013-4686(02)00685-0

N. Sakmeche, E. A. Bazzaoui, M. Fall, S. Aeiyach, M. Jouini, J. C. Lacroix, J. J. Aaron, P. C. Lacaze, Synthetic Metals 84(1-3) (1997) 191-192. https://doi.org/10.1016/s0379-6779(97)80708-4

E. A. Bazzaoui, M. Bazzaoui, J. Aubard, J. S. Lomas, N. Félidj, G. Lévi, Synthetic Metals 123(2) (2001) 299-309. https://doi.org/10.1016/S0379-6779(01)00299-5

A. R. Hillman, E. F. Mallen, Journal of Electroanalytical Chemistry 220(2) (1987) 351-367. https://doi.org/10.1016/0022-0728(87)85121-5

E. A. Bazzaoui, J. P. Marsault, S. Aeiyach, P. C. Lacaze, Synthetic Metals 66(3) (1994) 217-224. https://doi.org/10.1016/0379-6779(94)90070-1

M. Bazzaoui, E. A. Bazzaoui, J. I. Martins, L. Martins, Materials Science Forum, 455 (2004) 484-488. https://doi.org/10.4028/www.scientific.net/MSF.455-456.484

S. Aeiyach, E. A. Bazzaoui, P. C. Lacaze, Journal of Electroanalytical Chemistry 434(1-2) (1997) 153-162. https://doi.org/10.1016/S0022-0728(97)00044-2

E. A. Bazzaoui, J. Aubard, N. Félidj, G. Laurent, G. Lévi, Journal of Raman Spectroscopy 36(8) (2005) 817-823. https://doi.org/10.1002/jrs.1368

E. A. Bazzaoui, S. Aeiyach, P. C. Lacaze, Synthetic Metals 83(2) (1996) 159-165. https://doi.org/10.1016/S0379-6779(97)80070-7

M. Bouabdallaoui, Z. Aouzal, S. B. Jadi, A. El Jaouhari, M. Bazzaoui, G. Lévi, E. A. Bazzaoui, J. Solid State Electrochemistry 21(12) (2017) 3519-3532. https://doi.org/10.1007/s10008-017-3698-9

M. Bouabdallaoui, Z. Aouzal, A. El Guerraf, S. B. Jadi, M. Bazzaoui, R. Wang, E. A. Bazzaoui, Materials Today: Proceedings 31 (2020) S69-S74. https://doi.org/10.1016/j.matpr.2020.06.067

A. Czerwinski, H. Zimmer, C. Van Pham, J. Harry B. Mark, Journal of The Electrochemical Society 132(11) (1985) 2669-2672. https://doi.org/10.1149/1.2113645

S. Dong, W. Zhang, Synthetic Metals 30(3) (1989) 359-369. https://doi.org/10.1016/0379-6779(89)90659-0

E. A. Bazzaoui, S. Aeiyach, P. C. Lacaze, Journal of Electroanalytical Chemistry 364(1-2) (1994) 63-69. https://doi.org/10.1016/0022-0728(93)02910-A

M. Lapkowski, G. Bidan, M. Fournier, Synthetic Metals 41(1-2) (1991) 407-410. https://doi.org/10.1016/0379-6779(91)91094-Q

G. Bidan, E. M. Geniés, M. Lapkowski, Synthetic Metals 31(3) (1989) 327-334. https://doi.org/10.1016/0379-6779(89)90800-X

R. J. Walkman, F. Diaz, J. Bargon, Journal of Physical Chemistry 88(19) (1984) 4343-4346. https://doi.org/10.1021/j150663a030

S. Alkan, C. A. Cutler, J. R. Reynolds, Advanced Functional Materials 13(4) (2003) 331-336. https://doi.org/10.1002/adfm.200304307

K. Nishihata, K. Tsunashima, Y. Ono, M. Matsumiya, ECS Transactions 75(52) (2017) 99-103. https://doi.org/10.1149/07552.0099ecst

D. R. Macfarlane, M. Forsyth, P. C. Howlett, J. M. Pringle, J. Sun, G. Annat, W. Neil, E. I. Izgorodina, Acc. Chem. Res. 40(11) (2007) 1165-1173. https://doi.org/10.1021/ef00049a003

M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Materials for Sustainable Energy 8 (2010) 129-137. https://doi.org/10.1142/9789814317665_0020

K. Tsunashima, M. Sugiya, Electrochemistry Communications 9(9) (2007) 2353-2358. https://doi.org/10.1016/j.elecom.2007.07.003

K. Tsunashima, M. Sugiya, Electrochemistry 75(9) (2007) 734-736. https://doi.org/10.5796/electrochemistry.75.734

K. Tsunashima, A. Kawabata, M. Matsumiya, S. Kodama, R. Enomoto, M. Sugiya, Y. Kunugi, Electrochemistry Communications 13(2) (2011) 178-181. https://doi.org/10.1016/j.elecom.2010.12.007

S. L. Meisel, G. C. Johnson, H. D. Hartough, Journal of the American Chemical Society 72(5) (1950) 1910-1912. https://doi.org/10.1021/ja01161a015

J. Wristers, Journal of the American Chemical Society 99(15) (1977) 5051-5055. https://doi.org/10.1021/ja00457a026

H. D. Hartough, J. W. Schick, J. J. Dickert Jr, Journal of the American Chemical Society 72(4) (1950) 1572-1577. https://doi.org/10.1021/ja01160a040

D. Margosian, P. Kovacic, Journal of Polymer Science 17(11) (1979) 3695-3703. https://doi.org/10.1002/pol.1979.170171125

D. J. Blackwood, L. M. Peter, Electrochimica Acta 34(11) (1989) 1505-1511. https://doi.org/10.1016/0013-4686(89)87033-1

C. P. De Pauli, M. C. Giordano, J. O. Zerbino, Electrochimica Acta 28(12) (1983) 1781-1788. https://doi.org/10.1016/0013-4686(83)87014-5

C. E. B. Marino, E. M. de Oliviera, R. C. Rocha-Filho, S. R. Biaggio, Corrosion Science 43(8) (2001) 1465-1476. https://doi.org/10.1016/S0010-938X(00)00162-1

N. Ahmad, A. G. MacDiarmid, Synthetic Metals 78(2) (1996) 103-110. https://doi.org/10.1016/0379-6779(96)80109-3

M. Y. Rusanova, P. Polaskova, M. Muzikar, W. R. Fawcett, Electrochimica Acta 51(15) (2006) 3097-3001. https://doi.org/10.1016/j.electacta.2005.08.044

G. Horányi, I. Bakos, Journal of Electroanalytical Chemistry 331(1-2) (1992) 727-737. https://doi.org/10.1016/0022-0728(92)85002-K

A. F. Diaz, J. Crowley, J. Bargon, G. P. Gardini, J. B. Torrance, Journal of Electroanalytical Chemistry 121 (1981) 355-361. https://doi.org/10.1016/S0022-0728(81)80592-X

G. Morea, L. Sabbatini, R. H. West, J. C. Vickerman, Surface and Interface Analysis 18(6) (1992) 421-429. https://doi.org/10.1002/sia.740180609

D. Zhao, Journal of Physical Chemistry C 112(15) (2008) 5993-6001. https://doi.org/10.1021/jp712049c

M. J. Ariza, E. Rodríguez-Castellón, R. Rico, J. Benavente, M. Muñoz, M. Oleinikova, Journal of Colloid and Interface Science 226(1) (2000) 151-158. https://doi.org/10.1006/jcis.2000.6805

I. F. Amaral, P. L. Granja, M. A. Barbosa, Journal of Biomaterials Science, Polymer Edition 16(12) (2005) 1575-1593. https://doi.org/10.1163/156856205774576736

K. Rokosz, T. Hryniewicz, D. Matýsek, S. Raaen, J. Valíček, Ł. Dudek, M. Harničárová, Materials (Basel) 318(9) (2016) 9-16. https://doi.org/10.3390/ma9050318

S. Tanaka, M. Sato, K. Kaeriyama, Die Makromolekulare Chemie 185(7) (1984) 1295-1306. https://onlinelibrary.wiley.com/doi/abs/10.1002/macp.1984.021850703

F. A. Miller, C. H. Wilkins, Analytical Chemistry 24(8) (1952) 1253-1294. https://doi.org/10.1021/ac60068a007

J. L. Sauvajol, D. Chenouni, J. P. Lère-Porte, C. Chorro, B. Moukala, J. Petrissans, Synthetic Metals 38(1) (1990) 1-12. https://doi.org/10.1016/0379-6779(90)90063-Q



How to Cite

Bouabdallaoui, M., Aouzal, Z., El Guerraf, A. Q. ., Bazzaoui, M., & Bazzaoui, E. A. (2022). Electrodeposition of strictly alpha,alpha’-polythiophene chains on oxidizable metals in acidic concentrated aqueous media: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(4), 617–638. https://doi.org/10.5599/jese.1201