Reduced graphene oxide as efficient carbon support for Pd-based ethanol oxidation catalysts in alkaline media
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1643Keywords:
synergistic effects, electrochemical active surface area, rotating disk electrode, alkaline direct ethanol fuel cellAbstract
The sluggish kinetics of the ethanol oxidation reaction (EOR) and the related development of low-cost, highly active and stable anode catalysts still remains the major challenge in alkaline direct ethanol fuel cells (ADEFCs). In this respect, we synthesized a PdNiBi nanocatalyst on reduced graphene oxide (rGO) via a facile synthesis method. The prepared composite catalyst was physicochemically characterized by SEM, STEM, EDX, ICP-OES and XRD to analyze the morphology, particle distribution and size, elemental composition and structure. The electrochemical activity and stability towards EOR in alkaline media were examined using the thin-film rotating disk electrode technique. The results reveal well-dispersed and strongly anchored nanoparticles on the rGO support, providing abundant active sites. The PdNiBi/rGO presents a higher EOR activity and stability compared to a commercial Pd/C ascribed to a high ECSA and synergistic effects between Pd, Ni and Bi and the rGO material. These findings suggest PdNiBi/rGO as a promising anode catalyst in ADEFC applications.
Downloads
References
L. An, T. S. Zhao, Y. S. Li, Carbon-neutral sustainable energy technology: Direct ethanol fuel cells, Renewable and Sustainable Energy Reviews 50 (2015) 1462-1468. https://doi.org/10.1016/j.rser.2015.05.074
J. Zhang, Z. Zhao, Y. Wang, J. Wang, D. Peng, B. Li, T. Bo, K. Zheng, Z. Zhou, L. Lv, Z. Xin, B. Zhang, L. Shao, Ethanol electrooxidation on highly active palladium/graphene oxide aerogel catalysts, Chemical Physics 534 (2020) 110753. https://doi.org/10.1016/j.chemphys.2020.110753
M. Roschger, S. Wolf, K. Mayer, M. Singer, V. Hacker, Alkaline Direct Ethanol Fuel Cell : Effect of the Anode Flow Field Design and the Setup Parameters on Performance, Energies 15 (2022) 7234. https://doi.org/10.3390/en15197234
L. Karuppasamy, S. Anandan, C. Y. Chen, J. J. Wu, Sonochemical Synthesis of PdAg/RGO Nanocomposite as an Efficient Electrocatalyst for Both Ethanol Oxidation and Oxygen Reduction Reaction with High CO Tolerance, Electrocatalysis 8 (2017) 430-441. https://doi.org/10.1007/s12678-017-0391-9
S. Wolf, M. Roschger, B. Genorio, M. Kolar, D. Garstenauer, B. Bitschnau, V. Hacker, Ag-MnxOy on Graphene Oxide Derivatives as Oxygen Reduction Reaction Catalyst in Alkaline Direct Ethanol Fuel Cells, Catalysts 12 (2022) 780. https://doi.org/10.3390/catal12070780
S. Rezaee, S. Shahrokhian, M. K. Amini. Nanocomposite with Promoted Electrocatalytic Behavior Based on Bimetallic Pd-Ni Nanoparticles, Manganese Dioxide, and Reduced Graphene Oxide for Efficient Electrooxidation of Ethanol, Journal of Physical Chemistry C 122 (2018) 9783-9794. https://doi.org/10.1021/acs.jpcc.8b01475
B. Cermenek, B. Genorio, T. Winter, S. Wolf, J. G. Connell, M. Roschger, I. Letofsky-Papst, N. Kienzl, B. Bitschnau, V. Hacker, Alkaline Ethanol Oxidation Reaction on Carbon Supported Ternary PdNiBi Nanocatalyst using Modified Instant Reduction Synthesis Method, Electrocatalysis 11 (2020) 203-214. https://doi.org/10.1007/s12678-020-00621-y
S. R. Chowdhury, T. Maiyalagan, S. K. Bhattachraya, A. Gayen, Influence of phosphorus on the electrocatalytic activity of palladium nickel nanoalloy supported on N-doped reduced graphene oxide for ethanol oxidation reaction, Electrochimica Acta 342 (2020) 136028. https://doi.org/10.1016/j.electacta.2020.136028
N. Alfi, M. Z. Yazdan-Abad, A. Rezvani, M. Noroozifar, M. Khorasani-Motlagh, Three-dimensional Pd-Cd nanonetwork decorated on reduced graphene oxide by a galvanic method as a novel electrocatalyst for ethanol oxidation in alkaline media, Journal of Power Sources 396 (2018) 742-748. https://doi.org/10.1016/j.jpowsour.2018.06.080
J. N. Tiwari, N. K. Dang, H. J. Park, S. Sultan, M. G. Kim, J. Haiyan, Z. Lee, K. S. Kim. Remarkably enhanced catalytic activity by the synergistic effect of palladium single atoms and palladium–cobalt phosphide nanoparticles, Nano Energy 78 (2020) 105166. https://doi.org/10.1016/j.nanoen.2020.105166
J. L. Tan, A. M. De Jesus, S. L. Chua, J. Sanetuntikul, S. Shanmugam, B. J. V. Tongol, H. Kim, Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell, Applied Catalysis A 531 (2017) 29-35. https://doi.org/10.1016/j.apcata.2016.11.034
M. Zhang, J. Xie, Q. Sun, Z. Yan, M. Chen, J. Jing, A. M. S. Hossain. In situ synthesis of palladium nanoparticle on functionalized graphene sheets at improved performance for ethanol oxidation in alkaline media, Electrochimica Acta 111 (2013) 855-861. https://doi.org/10.1016/j.electacta.2013.08.135
R. Krishna, D. M. Fernandes, J. Ventura, C. Freire, E. Titus, Facile synthesis of reduced graphene oxide supported Pd@NixB/RGO nanocomposite: Novel electrocatalyst for ethanol oxidation in alkaline media, International Journal of Hydrogen Energy 41 (2016) 11811-11822. https://doi.org/10.1016/j.ijhydene.2015.12.034
A. Ručigaj, J. G. Connell, M. Dular, B. Genorio, Influence of the ultrasound cavitation intensity on reduced graphene oxide functionalization, Ultrasonics Sonochemistry 90 (2022) 106212. https://doi.org/10.1016/j.ultsonch.2022.106212
M. Roschger, S. Wolf, B. Genorio, V. Hacker, Effect of PdNiBi Metal Content : Cost Reduction in Alkaline Direct Ethanol Fuel Cells, Sustainability 14 (2022) 15485. https://doi.org/10.3390/su142215485
K. Bhunia, S. Khilari, D. Pradhan, Monodispersed PtPdNi Trimetallic Nanoparticles-Integrated Reduced Graphene Oxide Hybrid Platform for Direct Alcohol Fuel Cell, ACS Sustainable Chemistry and Engineering 6 (2018) 7769-7778. https://doi.org/10.1021/acssuschemeng.8b00721
D. Mahato, T. Gurusamy, S. K. Jain, K. Ramanujam, P. Haridoss, T. Thomas, CuO modified ZnO on nitrogen-doped carbon: a durable and efficient electrocatalyst for oxygen reduction reaction, Materials Today Chemistry 26 (2022) 101167. https://doi.org/10.1016/j.mtchem.2022.101167
I. G. Casella, M. Contursi, Characterization of bismuth adatom-modified palladium electrodes. The electrocatalytic oxidation of aliphatic aldehydes in alkaline solutions, Electrochimica Acta 52 (2006) 649-657. https://doi.org/10.1016/j.electacta.2006.05.048
Z. Zhang, L. Xin, K. Sun, W. Li, Pd-Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte, International Journal of Hydrogen Energy 36 (2011) 12686-12697. https://doi.org/10.1016/j.ijhydene.2011.06.141
A. O. Neto, M. M. Tusi, N. S. De Oliveira Polanco, S. G. Da Silva, M. Coelho Dos Santos, E. V. Spinacé, PdBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium, International Journal of Hydrogen Energy 36 (2011) 10522-10526. https://doi.org/10.1016/j.ijhydene.2011.05.154
M. Simões, S. Baranton, C. Coutanceau, Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4, Electrochimica Acta 56 (2010) 580-591. https://doi.org/10.1016/j.electacta.2010.09.006
B. Cermenek, J. Ranninger, B. Feketeföldi, I. Letofsky-Papst, N. Kienzl, B. Bitschnau, V. Hacker, Novel highly active carbon supported ternary PdNiBi nanoparticles as anode catalyst for the alkaline direct ethanol fuel cell, Nano Research 12 (2019) 683-693. https://doi.org/10.1007/s12274-019-2277-z
S. Jongsomjit, P. Prapainainar, K. Sombatmankhong, Synthesis and characterisation of Pd-Ni-Sn electrocatalyst for use in direct ethanol fuel cells, Solid State Ionics 288 (2016) 147-153. https://doi.org/10.1016/j.ssi.2015.12.009
R. N. Singh, A. Singh, Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions, Carbon 47 (2009) 271-278. https://doi.org/10.1016/j.carbon.2008.10.006
C. Yao, Q. Zhang, Y. Su, L. Xu, H. Wang, J. Liu, S. Hou, Palladium Nanoparticles Encapsulated into Hollow N-Doped Graphene Microspheres as Electrocatalyst for Ethanol Oxidation Reaction, ACS Applied Nano Materials 2 (2019) 1898-1908. https://doi.org/10.1021/acsanm.8b02294
D. Rajesh, P. Indra Neel, A. Pandurangan, C. Mahendiran, Pd-NiO decorated multiwalled carbon nanotubes supported on reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation in alkaline medium, Applied Surface Science 442 (2018) 787-796. https://doi.org/10.1016/j.apsusc.2018.02.174
Y. Jin, D. Han, W. Jia, G. Huang, F. Li, X. Chen, R. Li, M. Zheng, W. Gao, B-N Codoped Graphene as a Novel Support for Pd Catalyst with Enhanced Catalysis for Ethanol Electrooxidation in Alkaline Medium, Journal of The Electrochemical Society 164 (2017) F638-F644. https://doi.org/10.1149/2.1351706jes
R. C. Cerritos, M. Guerra-Balcázar, R. F. Ramírez, J. Ledesma-García, L. G. Arriaga, Morphological effect of Pd catalyst on ethanol electro-oxidation reaction, Materials 5 (2012) 1686-1697. https://doi.org/10.3390/ma5091686
J. D. Lović, V. D. Jović, Electrochemical behaviour of electrodeposited Pd and PdNi coatings for the ethanol oxidation reaction in alkaline solution, Journal of Electrochemical Science and Engineering 8 (2018) 39-47. https://doi.org/10.5599/jese.445
S. Y. Shen, T. S. Zhao, J. B. Xu, Y.S. Li, Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells, Journal of Power Sources 195 (2010) 1001-1006. https://doi.org/10.1016/j.jpowsour.2009.08.079
J. Y. C. Ribeiro, R. S. da Silva, G. R. Salazar-Banda, K. I. B. Eguiluz, Pd-Ni-B/C Nanocatalysts for Electrochemical Oxidation of Ethanol in Alkaline Media, Catalysis Research 3 (2023) 005. https://doi.org/10.21926/cr.2301005
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Austrian Science Fund
Grant numbers I 3871-N37 -
Javna Agencija za Raziskovalno Dejavnost RS
Grant numbers P1-0175;P2-0423;P2-0393;I0-0003;N2-0087;NC-0007;NC-0016;N2-0155;N2-0257