Integrated bio-electro-Fenton approach for efficient removal of the antiviral sofosbuvir in aqueous medium: kinetics, parameters optimization, mineralization pathway, and biodegradability enhancement

Original scientific paper

Authors

  • Abdelkader Zarrouk Laboratory of Materials, Nanotechnology and Environment, Mohammed V University, Faculty of Science, 4Av. ibn Battuta, B.P. 1014 Rabat, Morocco https://orcid.org/0000-0002-5495-2125
  • Amine Asserghine Laboratory of Materials, Nanotechnology and Environment (LMNE), Faculty of Sciences, Mohammed V University, PO. Box. 1014, Agdal, Rabat, Morocco https://orcid.org/0009-0000-5740-9040
  • Clément Trellu Laboratoire Géomatériaux et Environnement (LGE), EA 4508, Université Gustave Eiffel, 77454 Marne-la-Vallée, Cedex 2, France https://orcid.org/0000-0002-4622-6561
  • Miloud El Karbane Laboratory of Analytical Chemistry and Bromatology (LCAB), Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco https://orcid.org/0000-0001-9629-5517
  • Fouad Echerfaoui Laboratory of Analytical Chemistry and Bromatology (LCAB), Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco https://orcid.org/0000-0002-3548-2105
  • Ghizlan Kaichouh Laboratory of Materials, Nanotechnology and Environment (LMNE), Faculty of Sciences, Mohammed V University, PO. Box. 1014, Agdal, Rabat, Morocco https://orcid.org/0000-0002-2140-2127

DOI:

https://doi.org/10.5599/jese.2824

Keywords:

Degradation, Box-Behnken design, hydroxyl radicals, biological treatment

Abstract

The accumulation of antiviral drugs, such as sofosbuvir (SOF), in aquatic environments raises growing concerns due to their persistence and potential ecological risks. This study addresses the need for effective degradation strategies by investigating the homogeneous electro-Fenton (EF) process in a Pt/carbon felt cell for the degradation and mineralization of SOF in an aqueous medium. A Box-Behnken design (BBD) was employed to optimize key operational parameters, including initial Fe2+ concentration, current intensity, and initial SOF concentration, targeting chemical oxygen demand (COD) removal as the main response. The model showed excellent predictability (R2 = 0.99), and the optimal conditions were identified as 400 mA current intensity, CSOF-0 = 0.1 mM, and CFe2+-0 = 0.1 mM. Under these conditions, 97% of SOF was degraded within 5 min, while complete mineralization was achieved within 5 h. Biodegradability tests revealed an increase in the BOD5/COD ratio to 0.41 after 2 h of electrolysis, indicating that the EF process can be effectively coupled with a biological treatment. The combined bio-electro-Fenton (bio-EF) approach successfully achieved complete mineralization, offering a cost-effective and sustainable strategy for the removal of recalcitrant pharmaceutical pollutants from water.

Downloads

Download data is not yet available.

References

[1] A. Shokri, B. Nasernejad, M. Sanavi Fard, Challenges and Future Roadmaps in Heterogeneous Electro Fenton Process for Wastewater Treatment, Water, Air, & Soil Pollution 234 (2023) 153. https://doi.org/10.1007/s11270-023-06139-5. DOI: https://doi.org/10.1007/s11270-023-06139-5

[2] A. Shokri, K. Mahanpoor, Using UV/ZnO process for degradation of Acid red 283 in synthetic wastewater, Bulgarian Chemical Communications 50(1) (2018) 27‑32. https://www.researchgate.net/publication/325554795_Using_UVZnO_process_for_degradation_of_Acid_red_283_in_synthetic_wastewater.

[3] M. Bilal, K. Rizwan, M. Adeel, H.M.N. Iqbal, Hydrogen-based catalyst-assisted advanced oxidation processes to mitigate emerging pharmaceutical contaminants, International Journal of Hydrogen Energy 47(45) (2022) 19555-19569. https://doi.org/10.1016/j.ijhydene.2021.11.018. DOI: https://doi.org/10.1016/j.ijhydene.2021.11.018

[4] P. Krasucka, A. Rombel, X.J. Yang, M. Rakowska, B. Xing, P. Oleszczuk, Adsorption and desorption of antiviral drugs (ritonavir and lopinavir) on sewage sludges as a potential environmental risk, Journal of Hazardous Materials 425 (2022) 127901. https://doi.org/10.1016/j.jhazmat.2021.127901. DOI: https://doi.org/10.1016/j.jhazmat.2021.127901

[5] K. Kümmerer, Pharmaceuticals in the environment, Annual Review of Environment and Resources 35 (2010) 57-75. https://doi.org/10.1146/annurev-environ-052809-161223. DOI: https://doi.org/10.1146/annurev-environ-052809-161223

[6] E. De Clercq, P. Herdewijn, Strategies in the design of antiviral drugs, in Pharmaceutical Sciences Encyclopedia, S.C. Gad (Ed.), Wiley, 2010, pp. 1-56. https://doi.org/10.1002/9780470571224.pse026. DOI: https://doi.org/10.1002/9780470571224.pse026

[7] E. De Clercq, Three decades of antiviral drugs, Nature Reviews Drug Discovery 6(12) (2007) 941-941. https://doi.org/10.1038/nrd2485. DOI: https://doi.org/10.1038/nrd2485

[8] A.C. Singer, M.A. Nunn, E.A. Gould, A.C. Johnson, Potential risks associated with the proposed widespread use of Tamiflu, Environmental Health Perspectives 115(1) (2007) 102-106. https://doi.org/10.1289/ehp.9574. DOI: https://doi.org/10.1289/ehp.9574

[9] O. Mitjà, B. Clotet, Use of antiviral drugs to reduce COVID-19 transmission, The Lancet Global Health 8(5) (2020) e639-e640. https://doi.org/10.1016/S2214-109X(20)30114-5. DOI: https://doi.org/10.1016/S2214-109X(20)30114-5

[10] P. Mishra, J. Florian, K. Qi, W. Zeng, L.K. Naeger, E. Donaldson, S. Connelly, J. O’Rear, D. Price, J. Murray, et al., FDA perspective on sofosbuvir therapy for patients with chronic hepatitis C virus genotype 1 infection who did not respond to treatment with pegylated interferon and ribavirin, Gastroenterology 147(6) (2014) 1196-1200. https://doi.org/10.1053/j.gastro.2014.10.027. DOI: https://doi.org/10.1053/j.gastro.2014.10.027

[11] C. Prasse, M. P. Schlüsener, R. Schulz, T. A. Ternes, Antiviral drugs in wastewater and surface waters: a new pharmaceutical class of environmental relevance?, Environmental Science & Technology 44(5) (2010) 1728-1735. https://doi.org/10.1021/es903216p. DOI: https://doi.org/10.1021/es903216p

[12] H. Babas, G. Kaichouh, M. Khachani, M. E. Karbane, A. Chakir, A. Guenbour, A. Bellaouchou, I. Warad, A. Zarrouk, Equilibrium and kinetic studies for removal of antiviral sofosbuvir from aqueous solution by adsorption on expanded perlite: Experimental, modelling and opti¬mization, Surfaces and Interfaces 23 (2021) 100962. https://doi.org/10.1016/j.surfin.2021.100962. DOI: https://doi.org/10.1016/j.surfin.2021.100962

[13] A. Shokri, Photocatalytic Degradation of Nitrotoluene in Synthetic Wastewater by CoFe₂O₄/SiO₂/TiO₂ Nanoparticles Using Box-Behnken Experimental Design, Desalination and Water Treatment 247 (2022) 92‑99. https://doi.org/10.5004/dwt.2022.28037. DOI: https://doi.org/10.5004/dwt.2022.28037

[14] W.H. Glaze, J.-W. Kang, D.H. Chapin, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Ozone: Science & Engineering 9(4) (1987) 335-352. https://doi.org/10.1080/01919518708552148. DOI: https://doi.org/10.1080/01919518708552148

[15] A. Shokri, Employing UV/Peroxydisulphate (PDS) Activated by Ferrous Ion for the Removal of Toluene in Aqueous Environment: Electrical Consumption and Kinetic Study, International Journal of Environmental Analytical Chemistry 102 (2022) 4478‑4495. https://doi.org/10.1080/03067319.2020.1784887. DOI: https://doi.org/10.1080/03067319.2020.1784887

[16] S. Mohammadi, M. Zarei, M.S. Amini-Fazl, M. Ebratkhahan, Removal and mineralization of prednisolone from water by using homogeneous and heterogeneous electro-Fenton processes, Journal of Environmental Chemical Engineering 11(5) (2023) 110465. https://doi.org/10.1016/j.jece.2023.110465. DOI: https://doi.org/10.1016/j.jece.2023.110465

[17] N. Oturan, M.A. Oturan, Electro-Fenton process: background, new developments, and applications, in Electrochemical Water and Wastewater Treatment, Elsevier, 2018, pp. 193-221. https://doi.org/10.1016/B978-0-12-813160-2.00008-0. DOI: https://doi.org/10.1016/B978-0-12-813160-2.00008-0

[18] C. Trellu, Y. Péchaud, N. Oturan, E. Mousset, D. Huguenot, E.D. Van Hullebusch, G. Esposito, M.A. Oturan, Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: mineralization efficiency and modelling, Applied Catalysis B 194 (2016) 32-41. https://doi.org/10.1016/j.apcatb.2016.04.039. DOI: https://doi.org/10.1016/j.apcatb.2016.04.039

[19] A. Bayat, A. Shokri, Degradation of P‑Nitrotoluene in Aqueous Environment by Fe(II)/Peroxymonosulfate Using Full Factorial Experimental Design, Separation Science and Technology 56(17) (2021) 2941‑2950 https://doi.org/10.1080/01496395.2020.1861016. DOI: https://doi.org/10.1080/01496395.2020.1861016

[20] A. Shokri, B. Nasernejad, Investigation of Spent Caustic Effluent Treatment by Electro-Peroxone Process; Cost Evaluation and Kinetic Studies, Journal of Industrial and Engineering Chemistry 129 (2024) 170‑179 https://doi.org/10.1016/j.jiec.2023.08.030. DOI: https://doi.org/10.1016/j.jiec.2023.08.030

[21] I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow, Environmental Science and Pollution Research 21(14) (2014) 8336-8367. https://doi.org/10.1007/s11356-014-2783-1. DOI: https://doi.org/10.1007/s11356-014-2783-1

[22] E. Brillas, Progress of homogeneous and heterogeneous electro-Fenton treatments of antibiotics in synthetic and real wastewaters. A critical review on the period 2017-2021, Science of the Total Environment 819 (2022) 153102. https://doi.org/10.1016/j.scitotenv.2022.153102. DOI: https://doi.org/10.1016/j.scitotenv.2022.153102

[23] M.A. Oturan, An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D, Journal of Applied Electrochemistry 30(4) (2000) 475-482. https://doi.org/10.1023/A:1003994428571. DOI: https://doi.org/10.1023/A:1003994428571

[24] E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chemical Reviews 109(12) (2009) 6570-6631. https://doi.org/10.1021/cr900136g. DOI: https://doi.org/10.1021/cr900136g

[25] H. Olvera-Vargas, C. Trellu, N. Oturan, M.A. Oturan, Bio-electro-Fenton: a new combined process - principles and applications, in Electro-Fenton Process, The Handbook of Environmental Chemistry, M. Zhou, M.A. Oturan, I. Sirés (Eds.), Springer, Singapore, 2017, Vol. 61, pp. 29-56. https://doi.org/10.1007/698_2017_53. DOI: https://doi.org/10.1007/698_2017_53

[26] O. Ganzenko, D. Huguenot, E. D. Van Hullebusch, G. Esposito, M. A. Oturan, Electro¬chemi-cal advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches, Environmental Science and Pollution Research 21(14) (2014) 8493-8524. https://doi.org/10.1007/s11356-014-2770-6. DOI: https://doi.org/10.1007/s11356-014-2770-6

[27] H. Olvera-Vargas, T. Cocerva, N. Oturan, D. Buisson, M.A. Oturan, Bioelectro-Fenton: a sustainable integrated process for removal of organic pollutants from water: application to mineralization of metoprolol, Journal of Hazardous Materials 319 (2016) 13-23. https://doi.org/10.1016/j.jhazmat.2015.12.010. DOI: https://doi.org/10.1016/j.jhazmat.2015.12.010

[28] H. Khan, S. Hussain, M.A. Ud Din, M. Arshad, F. Wahab, U. Hassan, A. Khan, Multiple design and modelling approaches for the optimisation of carbon felt electro-Fenton treatment of dye laden wastewater, Chemosphere 338 (2023) 139510. https://doi.org/10.1016/j.chemosphere.2023.139510. DOI: https://doi.org/10.1016/j.chemosphere.2023.139510

[29] H. Liu, X.Z. Li, Y.J. Leng, C. Wang, Kinetic modeling of electro-Fenton reaction in aqueous solution, Water Research 41(5) (2007) 1161-1167. https://doi.org/10.1016/j.watres.2006.12.006. DOI: https://doi.org/10.1016/j.watres.2006.12.006

[30] L. Carelle, L. Waffo, J. Marie, J.M. Dangwang Dikdim, G. Noumi, J. Sieliechi, A. Guessous, F. Echerfaoui, M. El Karbane, I. Warad, et al., Investigation on tenofovir removal from water by electro-Fenton process: optimization of the mineralization using Box-Behnken design, Biointerface Research in Applied Chemistry 13(6) (2023) 522. https://doi.org/10.33263/BRIAC136.522. DOI: https://doi.org/10.33263/BRIAC136.522

[31] A. Özcan, Y. Şahin, A.S. Koparal, M.A. Oturan, Propham mineralization in aqueous medium by anodic oxidation using boron-doped diamond anode: influence of experimental parameters on degradation kinetics and mineralization efficiency, Water Research 42(12) (2008) 2889-2898. https://doi.org/10.1016/j.watres.2008.02.027. DOI: https://doi.org/10.1016/j.watres.2008.02.027

[32] I. Yahiaoui, F. Aissani-Benissad, F. Fourcade, A. Amrane, Removal of tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO₂ electrode) coupled to activated sludge culture, Chemical Engineering Journal 221 (2013) 418-425. https://doi.org/10.1016/j.cej.2013.01.091. DOI: https://doi.org/10.1016/j.cej.2013.01.091

[33] L. Rachidi, A. Guessous, I. Haji, M. El Karbane, H. Chakchak, A. Zouhir, A. Talidi, I. Warad, A. Zarrouk, G. Kaichouh, Combined electro-Fenton and biological process for treatment of antidepressant sertraline: performance enhancement and by-products monitoring, Analytical & Bioanalytical Electrochemistry 15(6) (2023) 458-473. https://doi.org/10.22034/abec.2023.705726.

[34] F. Ferrag‐Siagh, F. Fourcade, I. Soutrel, H. Aït‐Amar, H. Djelal, A. Amrane, Tetracycline degradation and mineralization by the coupling of an electro‐Fenton pretreatment and a biological process, Journal of Chemical Technology and Biotechnology 88(7) (2013) 1380-1386. https://doi.org/10.1002/jctb.3990. DOI: https://doi.org/10.1002/jctb.3990

[35] J. Li, T. Tao, X. Li, J. Zuo, T. Li, J. Lu, S. Li, L. Chen, C. Xia, Y. Liu, et al., A spectrophotometric method for determination of chemical oxygen demand using home-made reagents, Desalination 239(1-3) (2009) 139-145. https://doi.org/10.1016/j.desal.2008.03.014. DOI: https://doi.org/10.1016/j.desal.2008.03.014

[36] W. Liu, Z. Ai, L. Zhang, Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment, Journal of Hazardous Materials 243 (2012) 257-264. https://doi.org/10.1016/j.jhazmat.2012.10.024. DOI: https://doi.org/10.1016/j.jhazmat.2012.10.024

[37] K. He, X. Guo, G. Wang, J. Xiong, H. Peng, F. Lai, J. He, Excellent treatment effect of actual wastewater from a pesticide plant using electro-Fenton process catalyzed by natural pyrite, Journal of Environmental Chemical Engineering 11(6) (2023) 111211. https://doi.org/10.1016/j.jece.2023.111211. DOI: https://doi.org/10.1016/j.jece.2023.111211

[38] Ş. Camcıoğlu, B. Özyurt, N. Oturan, D. Portehault, C. Trellu, M.A. Oturan, Heterogeneous electro-Fenton treatment of chemotherapeutic drug busulfan using magnetic nanocomposites as catalyst, Chemosphere 341 (2023) 140129. https://doi.org/10.1016/j.chemosphere.2023.140129. DOI: https://doi.org/10.1016/j.chemosphere.2023.140129

[39] K. Cruz-González, O. Torres-López, A. García-León, J.L. Guzmán-Mar, L.H. Reyes, A. Hernández-Ramírez, J.M. Peralta-Hernández, Determination of optimum operating parameters for Acid Yellow 36 decolorization by electro-Fenton process using BDD cathode, Chemical Engineering Journal 160(1) (2010) 199-206. https://doi.org/10.1016/j.cej.2010.03.043. DOI: https://doi.org/10.1016/j.cej.2010.03.043

[40] B.K. Körbahti, Response surface optimization of electrochemical treatment of textile dye wastewater, Journal of Hazardous Materials 145(1-2) (2007) 277-286. https://doi.org/10.1016/j.jhazmat.2006.11.031. DOI: https://doi.org/10.1016/j.jhazmat.2006.11.031

[41] S.Y. Guvenc, H.S. Erkan, G. Varank, M.S. Bilgili, G.O. Engin, Optimization of paper mill industry wastewater treatment by electrocoagulation and electro-Fenton processes using response surface methodology, Water Science and Technology 76(8) (2017) 2015-2031. https://doi.org/10.2166/wst.2017.327. DOI: https://doi.org/10.2166/wst.2017.327

[42] M. Panizza, M.A. Oturan, Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode, Electrochimica Acta 56(20) (2011) 7084-7087. https://doi.org/10.1016/j.electacta.2011.05.105. DOI: https://doi.org/10.1016/j.electacta.2011.05.105

[43] A. Wang, J. Qu, J. Ru, H. Liu, J. Ge, Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode, Dyes and Pigments 65(3) (2005) 227-233. https://doi.org/10.1016/j.dyepig.2004.07.019. DOI: https://doi.org/10.1016/j.dyepig.2004.07.019

[44] N. Oturan, M. Panizza, M.A. Oturan, Cold incineration of chlorophenols in aqueous solution by advanced electrochemical process electro-Fenton. Effect of number and position of chlorine atoms on the degradation kinetics, The Journal of Physical Chemistry A 113(41) (2009) 10988-10993. https://doi.org/10.1021/jp9069674. DOI: https://doi.org/10.1021/jp9069674

[45] A.R. Rahmani, D. Nematollahi, G. Azarian, K. Godini, Z. Berizi, Activated sludge treatment by electro-Fenton process: parameter optimization and degradation mechanism, Korean Journal of Chemical Engineering 32(8) (2015) 1570-1577. https://doi.org/10.1007/s11814-014-0362-2. DOI: https://doi.org/10.1007/s11814-014-0362-2

[46] S. Trabelsi, N. Oturan, N. Bellakhal, M. Oturan, Electrochemical oxidation of phthalic anhydride in aqueous medium by electro-Fenton process, Journal of Environmental Engineering and Management 19(5) (2009) 291-297. https://www.researchgate.net/publication/228725489_Electrochemical_oxidation_of_phtalic_anhydride_in_aqueous_medium_by_electro-Fenton_process.

[47] B. Balci, N. Oturan, R. Cherrier, M.A. Oturan, Degradation of atrazine in aqueous medium by electrocatalytically generated hydroxyl radicals. A kinetic and mechanistic study, Water Research 43(7) (2009) 1924-1934. https://doi.org/10.1016/j.watres.2009.01.021. DOI: https://doi.org/10.1016/j.watres.2009.01.021

[48] L. Rachidi, G. Kaichouh, M. Khachani, A. Zarrouk, M.E. Karbane, H. Chakchak, I. Warad, A.E. Hourch, K.E. Kacemi, A. Guessous, Optimization and modeling of the electro-Fenton process for treatment of sertraline hydrochloride: mineralization efficiency, energy cost and biodegradability enhancement, Chemical Data Collections 35 (2021) 100764. https://doi.org/10.1016/j.cdc.2021.100764. DOI: https://doi.org/10.1016/j.cdc.2021.100764

[49] E. Mousset, Y. Pechaud, N. Oturan, M.A. Oturan, Charge transfer/mass transport competition in advanced hybrid electrocatalytic wastewater treatment: development of a new current efficiency relation, Applied Catalysis B: Environmental 240 (2019) 102-111. https://doi.org/10.1016/j.apcatb.2018.08.055. DOI: https://doi.org/10.1016/j.apcatb.2018.08.055

[50] R.T. Doumbi, G. Bertrand Noumi, B. Ngobtchok, Domga, Tannery wastewater treatment by electro-Fenton and electro-persulfate processes using graphite from used batteries as free-cost electrode materials, Case Studies in Chemical and Environmental Engineering 5 (2022) 100190. https://doi.org/10.1016/j.cscee.2022.100190. DOI: https://doi.org/10.1016/j.cscee.2022.100190

[51] A. Fernandes, M.J. Nunes, A.S. Rodrigues, M.J. Pacheco, L. Ciríaco, A. Lopes, Electro-persulfate processes for the treatment of complex wastewater matrices: present and future, Molecules 26(16) (2021) 4821. https://doi.org/10.3390/molecules26164821. DOI: https://doi.org/10.3390/molecules26164821

[52] H. Nadais, X. Li, N. Alves, C. Couras, H.R. Andersen, I. Angelidaki, Y. Zhang, Bio-electro-Fenton process for the degradation of non-steroidal anti-inflammatory drugs in wastewater, Chemical Engineering Journal 338 (2018) 401-410. https://doi.org/10.1016/j.cej.2018.01.014. DOI: https://doi.org/10.1016/j.cej.2018.01.014

[53] L. Feng, W. Song, N. Oturan, M. Karbasi, E.D. Van Hullebusch, G. Esposito, S. Giannakis, M.A. Oturan, Electrochemical oxidation of naproxen in aqueous matrices: elucidating the intermediates’ eco-toxicity, by assessing its degradation pathways via experimental and density functional theory (DFT) approaches, Chemical Engineering Journal 451 (2023) 138483. https://doi.org/10.1016/j.cej.2022.138483. DOI: https://doi.org/10.1016/j.cej.2022.138483

[54] M. Yahya, M. El Karbane, N. Oturan, K. El Kacemi, M.A. Oturan, Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: kinetics and intermediate products analysis, Environmental Technology 37(10) (2016) 1276-1287. https://doi.org/10.1080/09593330.2015.1111427. DOI: https://doi.org/10.1080/09593330.2015.1111427

[55] H. Gallard, J. De Laat, B. Legube, Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions, Water Research 33(13) (1999) 2929-2936. https://doi.org/10.1016/S0043-1354(99)00007-X. DOI: https://doi.org/10.1016/S0043-1354(99)00007-X

[56] C. Annabi, F. Fourcade, I. Soutrel, F. Geneste, D. Floner, N. Bellakhal, A. Amrane, Degradation of enoxacin antibiotic by the electro-Fenton process: optimization, biodegradability improvement and degradation mechanism, Journal of Environmental Management 165 (2016) 96-105. https://doi.org/10.1016/j.jenvman.2015.09.018. DOI: https://doi.org/10.1016/j.jenvman.2015.09.018

[57] H. Lin, J. Wu, N. Oturan, H. Zhang, M.A. Oturan, Degradation of artificial sweetener saccharin in aqueous medium by electrochemically generated hydroxyl radicals, Environmental Science and Pollution Research 23(5) (2016) 4442-4453. https://doi.org/10.1007/s11356-015-5633-x. DOI: https://doi.org/10.1007/s11356-015-5633-x

[58] H. Lin, N. Oturan, J. Wu, H. Zhang, M.A. Oturan, Cold incineration of sucralose in aqueous solution by electro-Fenton process, Separation and Purification Technology 173 (2017) 218-225. https://doi.org/10.1016/j.seppur.2016.09.028. DOI: https://doi.org/10.1016/j.seppur.2016.09.028

[59] A. Özcan, Y. Şahin, A.S. Koparal, M.A. Oturan, Degradation of picloram by the electro-Fenton process, Journal of Hazardous Materials 153(1-2) (2008) 718-727. https://doi.org/10.1016/j.jhazmat.2007.09.015. DOI: https://doi.org/10.1016/j.jhazmat.2007.09.015

[60] A. Adachi, F. El Ouadrhiri, E.A.M. Saleh, R.H. Althomali, A.F. Kassem, E.M. Ibtissam, M.M. Moharam, K. Husain, N. Eloutassi, A. Lahkimi, Iron-doped catalyst synthesis in heterogeneous Fenton-like process for dye degradation and removal: optimization using response surface methodology, SN Applied Sciences 5(12) (2023) 342. https://doi.org/10.1007/s42452-023-05543-0. DOI: https://doi.org/10.1007/s42452-023-05543-0

[61] P. Pourali, M. Fazlzadeh, M. Aaligadri, A. Dargahi, Y. Poureshgh, B. Kakavandi, Enhanced three-dimensional electrochemical process using magnetic recoverable of Fe₃O₄@GAC towards furfural degradation and mineralization, Arabian Journal of Chemistry 15(8) (2022) 103980. https://doi.org/10.1016/j.arabjc.2022.103980. DOI: https://doi.org/10.1016/j.arabjc.2022.103980

[62] P.K. Singa, N. Rajamohan, M.H. Isa, C.Z.A. Abidin, A.H. Ibrahim, Remediation of carcinogenic PAHs from landfill leachate by electro-Fenton process - optimization and modeling, Chemosphere 359 (2024) 142248. https://doi.org/10.1016/j.chemosphere.2024.142248. DOI: https://doi.org/10.1016/j.chemosphere.2024.142248

[63] A. Long, H. Zhang, Selective oxidative degradation of toluene for the recovery of surfactant by an electro/Fe²⁺/persulfate process, Environmental Science and Pollution Research 22(15) (2015) 11606-11616. https://doi.org/10.1007/s11356-015-4406-x. DOI: https://doi.org/10.1007/s11356-015-4406-x

[64] S.Y. Guvenc, G. Varank, Box-Behnken design optimization of electro-Fenton/persulfate processes following the acidification for TSS removal from biodiesel wastewater, Sigma Journal of Engineering and Natural Sciences, 38(4) (2020) 1767-1780. https://dergipark.org.tr/en/pub/sigma/issue/65287/1004983#article_cite.

[65] L.C. Motue Waffo, J.M. Dangwang Dikdim, G.B. Noumi, Domga, R.T. Teguia Doumbi, G. Kaichouh, J.M. Sieliechi, I. Haji, A. Guessous, M. El Karbane, Electrochemical production of sulfate radicals for degradation of tenofovir in aqueous solution, Case Studies in Chemical and Environmental Engineering 6 (2022) 100235. https://doi.org/10.1016/j.cscee.2022.100235. DOI: https://doi.org/10.1016/j.cscee.2022.100235

[66] V. Sarria, S. Parra, N. Adler, P. Péringer, N. Benitez, C. Pulgarin, Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds, Catalysis Today 76(2-4) (2002) 301-315. https://doi.org/10.1016/S0920-5861(02)00228-6. DOI: https://doi.org/10.1016/S0920-5861(02)00228-6

[67] J.L. De Morais, P.P. Zamora, Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates, Journal of Hazardous Materials 123(1-3) (2005) 181-186. https://doi.org/10.1016/j.jhazmat.2005.03.041. DOI: https://doi.org/10.1016/j.jhazmat.2005.03.041

[68] D. Mansour, F. Fourcade, N. Bellakhal, M. Dachraoui, D. Hauchard, A. Amrane, Biodegradability improvement of sulfamethazine solutions by means of an electro-Fenton process, Water, Air, & Soil Pollution 223(5) (2012) 2023-2034. https://doi.org/10.1007/s11270-011-1002-7. DOI: https://doi.org/10.1007/s11270-011-1002-7

Published

29-09-2025

Issue

Section

Electrochemical Engineering

How to Cite

Integrated bio-electro-Fenton approach for efficient removal of the antiviral sofosbuvir in aqueous medium: kinetics, parameters optimization, mineralization pathway, and biodegradability enhancement: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 2824. https://doi.org/10.5599/jese.2824

Funding data

Similar Articles

1-10 of 163

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)