The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP

Original scientific paper

  • Arum Kurnia Sari Department of Chemistry, Faculty of Mathematics and Science, Padjadjaran University, Jatinangor, IndonesiaDepartment of Chemistry, Faculty of Mathematics and Science, Padjadjaran University, Jatinangor, Indonesia
  • Yeni Wahyuni Hartati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia and Moleculer Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran, Indonesia https://orcid.org/0000-0003-1463-6352
  • Shabarni Gaffar Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia and Moleculer Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran, Indonesia https://orcid.org/0000-0002-3659-4774
  • Isa Anshori Lab-on-Chip Group, Biomedical Engineering Department, Bandung Institute of Technology, Indonesia https://orcid.org/0000-0001-5134-7264
  • Darmawan Hidayat Department of Electrical Engineering, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia https://orcid.org/0000-0002-9752-1229
  • Hesti Lina Wiraswati Department of Parasitology, Faculty of Medicine, Universitas Padjadjaran, Indonesia https://orcid.org/0000-0003-2462-6633
Keywords: Box-Behnken design, 3-mercaptopropionic acid, differential pulse voltammetry, portability, fast response
Graphical Abstract

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus identified as the cause of the Coronavirus Disease 2019 (COVID-19) outbreak. The gold standard for detecting this virus is polymerase chain reaction (PCR). The electrochemical biosensor method can be an alternative method for detecting several biomolecules, such as viruses, because it is proven to have several advantages, including portability, good sensitivity, high specificity, fast response, and ease of use. This study aims to optimize an electro­chemical aptasensor using an AuNP-modified screen-printed carbon electrode (SPCE) with an aptamer to detect RBD protein S SARS-CoV-2. Aptasensors with the streptavidin-biotin system were immobilized on the SPCE/AuNP surface via covalent bonding with linkers to 3-mercaptopropionic acid (MPA) and electrochemically characterized by the [Fe(CN)6]3-/4- redox system using differential pulse voltammetry. The results showed that the immobi­lized aptamer on the SPCE/AuNP electrode surface experienced a decrease in current from 11.388 to 4.623 µA. The experimental conditions were optimized using the Box-Behnken experimental design for the three factors that affect the current response. The results of the optimization of the three parameters are the concentration of aptamer, incubation time of aptamer, and incubation time of RBD protein S SARS-CoV-2, each of which is 0.5 µg/mL, 40 minutes, and 60 minutes, respectively. The RBD protein S SARS-CoV-2 with various concentrations was tested on an electrochemical aptasensor to determine the de­tection limit and quantification limit, and the respective results were 2.63 and 7.97 ng/mL. The electrochemical aptasensor that has been developed in this study can be applied to detect RBD protein S SARS-CoV-2 as a COVID-19 biomarker in a simple, practical, and sensitive way.

Downloads

Download data is not yet available.

References

D. Schoeman, B.C. Fielding, Virology Journal 16 (2019) 1–22. https://doi.org/10.1186/-s12985-019-1182-0

Y. Jin, H. Yang, W. Ji, W. Wu, S. Chen, W. Zhang, G. Duan, Viruses 12 (2020). https://doi.org/10.3390/v12040372

W. Tai, L. He, X. Zhang, J. Pu, D. Voronin, S. Jiang, Y. Zhou, L. Du, Cellular and Molecular Immunology 17 (2020) 613–620. https://doi.org/10.1038/s41423-020-0400-4

A. C. Walls, Y. J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, D. Veesler, Cell 181 (2020) 281-292. https://doi.org/10.1016/j.cell.2020.02.058

Y. Song, J. Song, X. Wei, M. Huang, M. Sun, L. Zhu, B. Lin, H. Shen, Z. Zhu, C. Yang, Analytical Chemistry 92 (2020) 9895–9900. https://doi.org/10.1021/acs.analchem.0c01394

M. Drobysh, A. Ramanaviciene, R. Viter, A. Ramanavicius, Micromachines 12 (2021) 1–19. https://doi.org/10.3390/mi12040390

F. Cui, H. Zhou, Biosensors and Bioelectronics 165 (2020) 112349. https://doi.org/10.1016/j.bios.2020.112349

Z. Chen, Q. Wu, J. Chen, X. Ni, J. Dai, Virologica Sinica 35 (2020) 351–354.

https://doi.org/10.1007/s12250-020-00236-z

R. Chand, S. Neethirajan, Biosensors and Bioelectronic 15 (2017) 47–53. https://doi.org/10.1016/j.bios.2017.06.026

C.Y. Yao, W.L. Fu, World Journal of Gastroenterology 20 (2014) 12485–12492. https://doi.org/10.3748/wjg.v20.i35.12485

M. Labib, A.S. Zamay, D. Muharemagic, A. V. Chechik, J. C. Bell, M. V. Berezovski, Analytical Chemistry 84 (2012) 1813–1816. https://doi.org/10.1021/ac203412m

S. Mahari, A. Roberts, D. Shahdeo, S. Gandhi, BioRxiv (2020). https://doi.org/10.1101/2020.04.24.059204

Z. Rahmati, M. Roushani, H. Hosseini, H. Choobin, Microchimica Acta 188 (2021) 1–9. https://doi.org/10.1007/s00604-021-04762-9

L. Fabiani, M. Saroglia, G. Galatà, R. De Santis, S. Fillo, V. Luca, G. Faggioni, N. D’Amore, E. Regalbuto, P. Salvatori, G. Terova, D. Moscone, F. Lista, F. Arduini, Biosensors and Bioelectronics 171 (2021) 112686. https://doi.org/10.1016/j.bios.2020.112686

B. Mojsoska, S. Larsen, D. Olsen, J. Madsen, I. Brandslund, F. Alatraktchi, Sensors 21 (2021) 1–11. https://doi.org/10.3390/s21020390

S. Tripathy, S. G. Singh, Transactions of the Indian National Academy of Engineering. 5 (2020) 205–209. https://doi.org/10.1007/s41403-020-00103-z

H. Zhao, F. Liu, W. Xie, T.C. Zhou, J. OuYang, L. Jin, H. Li, C.Y. Zhao, L. Zhang, J. Wei, Y.P. Zhang, C.P. Li, Sensors and Actuators B 327 (2021) 128899. https://doi.org/10.1016/j.snb.2020.128899

M. A. Ali, C. Hu, S. Jahan, B. Yuan, M. S. Saleh, E. Ju, S. J. Gao, R. Panat, Advanced Materials 33 (2021) 1–15. https://doi.org/10.1002/adma.202006647

A. Yakoh, U. Pimpitak, S. Rengpipat, N. Hirankarn, Biosensors and Bioelectronics 176 (2021) 112912. https://doi.org/10.1016/j.bios.2020.112912

A. Idili, C. Parolo, R. Alvarez-Diduk, A. Merkoçi, ACS Sensors 6 (2021) 3093–3101. https://doi.org/10.1021/acssensors.1c01222

J. C. Abrego-Martinez, M. Jafari, S. Chergui, C. Pavel, D. Che, M. Siaj, Biosensors and Bioelectronics 195 (2022) 113595. https://doi.org/10.1016/j.bios.2021.113595

D. H. Mohsin, M. S. Mashkour, F. Fatemi, Chemical Papers 75 (2020) 279–295. https://doi.org/10.1007/s11696-020-01292-1

N. Li, Y. Wang, A. Pothukuchy, A. Syrett, N. Husain, S. Gopalakrisha, P. Kosaraju, A. D. El¬li-ngton, Nucleic Acids Research 36 (2008) 6739–6751. https://doi.org/10.1093/nar/gkn775

M. Famulok, J. Hartig, G. Mayer, Chemical Reviews 107 (2007) 3716–3737. https://doi.org/10.1021/cr0306743

B. Deiminiat, G. Rounaghi, M. Arbab-Zavar, I. Razavipanah, Sensors and Actuators B 242 (2017) 158–166. https://doi.org/10.1016/j.snb.2016.11.041

M. Jarczewska, L. Górski, E. Malinowska, Analytical Methods 8 (2014) 3861–3877. https://doi.org/10.1039/C6AY00499G

S. G. Meirinho, L. G. Dias, A. M. Peres, L. R. Rodrigues, Biotechnology Advances 34 (2016) 941–953. https://doi.org/10.1016/j.biotechadv.2016.05.006

A. K. Sari, S. Gaffar, Y. W. Hartati, Analytical & Bioanalytical Electrochemistry 14 (2022) 127–143. http://www.abechem.com/article_249328.html

S. Liébana, G. A. Drago, Essays in Biochemistry 60 (2016) 59–68. https://doi.org/10.1042/EBC20150007

Y. Hartati, N. Satriana, S. Gaffar, J. Mulyana, S. Wyantuti, Y. Sofiatin, Electrochemical Label-Free Immunosensor for The Detection of Epithelial Sodium Channels Using Gold Modified Screen-Printed Carbon Electrode, in: European Alliance for Innovation, 2020. https://doi.org/10.4108/eai.11-7-2019.2298070

S. Wyantuti, U. Pratomo, L. A. Manullang, D. Hendrati, Y. W. Hartati, H. H. Bahti, Heliyon 7 (2021). https://doi.org/10.1016/j.heliyon.2021.e06602

S. Wyantuti, F. W. Harahap, Y. W. Hartati, M. L. Firdaus, Journal of Physics: Conference Series 1731 (2021) 012017. https://doi.org/10.1088/1742-6596/1731/1/012017

Z. Kovács, C. Molnár, U. L. Štangar, V. M. Cristea, Z. Pap, K. Hernadi, L. Baia, Nanomaterials 11 (2021) 1134. https://doi.org/10.3390/nano11051334

Y. W. Hartati, D. R. Komala, D. Hendrati, S. Gaffar, A. Hardianto, Y. Sofiatin, H. H. Bahti, Royal Society Open Science 8 (2021) 202040. https://doi.org/10.1098/rsos.202040.

H. Shu, W. Wen, H. Xiong, X. Zhang, S. Wang, Electrochemistry Communications 37 (2013) 15–19. https://doi.org/10.1016/j.elecom.2013.09.018

M. Roushania, Z. Jalilianb, A. Nezhadali, Heliyon 5 (2019) e01984. https://doi.org/10.1016/j.heliyon.2019.e01984

V. R. R. Bernardo-Boongalinga, N. Serranoa, J. J. García-Guzmánc, J. M. Palacios-Santanderc, J. M. Díaz-Cruza, Journal of Electroanalytical Chemistry 847 (2019) 113184. https://doi.org/10.1016/j.jelechem.2019.05.066

Q. Gong, H. Yang, Y. Dong, W. Zhang, Analytical Methods 89 (2015) 565–569. https://doi.org/10.1039/C5AY00111K

M. Shah, V. Badwaik, Y. Kherde, H. K. Waghwani, T. Modi, Z. P. Aguilar, H. Rodgers, W. Hamilton, T. Marutharaj, C. Webb, M. B. Lawrenz, R. Dakshinamurthy, Frontiers in Bioscience 19 (2014) 1320–1344. https://doi.org/10.2741/4284

E. I. Fazrin, A. I. Naviardianti, S. Wyantuti, S. Gaffar, Y. W. Hartati, PENDIPA Journal of Science Education 4 (2020) 21–39. https://doi.org/10.33369/pendipa.4.2.21-39

C. D. De Souza, B. R. Nogueira, M. E. C. M. Rostelato, Journal of Alloys and Compounds 798 (2019) 714–740. https://doi.org/10.1016/j.jallcom.2019.05.153

H. W. Cheng, Z. R. Skeete, E. R. Crew, S. Shan, J. Luo, C. J. Zhong, Comprehensive Analytical Chemistry. 66 (2014) 37–79. https://doi.org/10.1016/B978-0-444-63285-2.00002-X

S. Wyantuti, M. Permadi, D. Hendrati, Y.W. Hartati, Al-Kimia 5 (2017) 12–20. https://doi.org/10.24252/al-kimia.v5i1.2844

M. P. Almeida, E. Pereira, P. Baptista, I. Gomes, S. Figueiredo, L. Soares, R. Franco, Comprehensive Analytical Chemistry 66 (2014) 529–367. https://doi.org/10.1016/B978-0-444-63285-2.00013-4

S. A. Akintelu, S. C. Olugbeko, A. S. Folorunso, International Nano Letters 10 (2020) 237–248. https://doi.org/10.1007/s40089-020-00317-7

Novianti, R. V. Manurung, Arifin, Indonesian Journal of Electronics and Instrumentation Systems. 10 (2020) 65. https://doi.org/10.22146/ijeis.54138.

S. Gaffar, D. Udamas, Y. W. Hartati, T. Subroto, AIP Conference Proceedings 2049 (2018) 1–9. https://doi.org/10.1063/1.5082518

Y. W. Hartati, B. S. U. Misonia, W. Santhy, G. Shabarni, Research Journal of Chemistry and Environment 22 (2018) 294–301. https://worldresearchersassociations.com/SpecialIssueAugust2018/52.pdf

Z. W. Jiang, T. T. Zhao, C. M. Li, Y. F. Li, C. Z. Huang, ACS Applied Materials & Interfaces 13 (2021) 49754–49761. https://doi.org/10.1021/acsami.1c17574

J. Tian, Z. Liang, O. Hu, Q. He, D. Sun, Z. Chen, Electrochimica Acta 387 (2021) 138553. https://doi.org/10.1016/j.electacta.2021.138553

H. Thakur, N. Kaur, D. Sareen, N. Prabhakar, Talanta 171 (2017) 115–123. https://doi.org/10.1016/j.talanta.2017.04.063

C. P. McMahon, S. J. Killoran, S. M. Kirwan, R. D. O’Neill, Chemical Communications 18 (2004) 2128–2130. https://doi.org/10.1039/b408051n

N. Fakhri, M. Hosseini, O. Tavakoli, Analytical Methods 10 (2018) 4438–4444. https://doi.org/10.1039/c8ay01331d

B. V. Ribeiro, T. A. R. Cordeiro, G. R. O. Freitas, L. F. Ferreira, D. L. Franco, Talanta 2 (2020). 100007. https://doi.org/10.1016/j.talo.2020.100007

L. Liv, Microchemical Journal 168 (2021). https://doi.org/10.1016/j.microc.2021.106445

P. Panjan, V. Virtanen, A. M. Sesay, Talanta 170 (2017) 331–336. https://doi.org/10.1016/j.talanta.2017.04.011

L. C. Chen, E. Wang, C. S. Tai, Y. C. Chiu, C. W. Li, Y. R. Lin, T. H. Lee, C. W. Huang, J. C. Chen, W. L. Chen, Biosensors and Bioelectronics 155 (2020) 112111. https://doi.org/10.1016/j.bios.2020.112111

Published
24-02-2022
Section
Electrochemical Science