Label-free electrochemical immunosensor for porcine gelatin using a boron-doped diamond electrode via diazonium salt electrografting
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2720Keywords:
Modified diamond electrode, diazonium derived film, pork skin gelatin, food authenticationAbstract
Porcine gelatin is widely used in the food and pharmaceutical industries due to its favorable functional properties and low cost. However, its presence in consumer products raises serious concerns for individuals with dietary restrictions based on religious, ethical, or health considerations. In this study, a label-free electrochemical immunosensor was developed using a boron-doped diamond electrode modified with aryl diazonium salt for the selective and sensitive detection of porcine gelatin. The diazonium electrografting enabled stable covalent immobilization of anti-porcine gelatin antibodies via protein A, preserving antibody orientation and activity. Experimental parameters were optimized using the Box-Behnken design, yielding ideal conditions of 500× antibody concentration, 60 min antibody incubation, and 15 min gelatin incubation. Detection was performed using differential pulse voltammetry with [Fe(CN)₆]3-/4- as a redox probe, allowing label-free monitoring of antibody-antigen interactions based on changes in current. The immunosensor demonstrated excellent analytical performance, with a detection limit of 142.15 pg mL-1. Specificity testing confirmed that the sensor responds exclusively to porcine gelatin, showing no cross-reactivity with bovine gelatin. These results demonstrate that the proposed immunosensor provides a rapid, highly sensitive, and specific platform for porcine gelatin detection, offering great potential for food authentication and halal verification.
Downloads
References
[1] R. M. C. Sari, S. Wyantuti, M. I. H. L. Zein, S. Rahimah, I. Irkham, A. U. Ibrahim, M. Ozsoz, Y. W. Hartati, Recent advances in rapid and reliable biosensors for detection of porcine gelatine, International Journal of Food Science Technology 59 (2024)7716-7726. https://doi.org/10.1111/ijfs.17129
[2] A. Choudhary, N. Gupta, F. Hameed, S. Choton, An overview of food adulteration: Concept, sources, impact, challenges and detection, International Journal of Chemical Studies 8 (2020) 2564-2573. https://doi.org/10.22271/chemi.2020.v8.i1am.8655
[3] S. Hermanto, T. Rudiana, M. I. H. L. Zein, A. W. Wisudawati, Methods Validation of Pork Authentication in Processed Meat Products (Sausages) Through Densitometry Analysis, Indonesian Journal of Halal Research 4 (2022) 35-44. https://doi.org/10.15575/ijhar.v4i1.11892
[4] S. Bansal, A. Singh, M. Mangal, A. K. Mangal, & S. Kumar, Food Adulteration : Sources , Health Risks and Detection, Critical Reviews in Food Science and Nutrition 57 (2017) 1174-1189. https://doi.org/10.1080/10408398.2014.967834
[5] C. -C. Tan, A. A. Karim, U. Uthumporn, F. C. Ghazali, Effect of Extraction Temperature on the Physicochemical Properties of Gelatine from the Skin of Black Tilapia (Oreochromis mossambicus), Journal of Physical Science 30(Supp. 1) (2019) 1-21. https://doi.org/10.21315/jps2019.30.s1.1
[6] A. Rakhmanova, Z. A. Khan, R. Sharif, X. Lü, Meeting the requirements of halal gelatin: A mini review, MOJ Food Processing & Technology 6 (2018) 477-482. https://doi.org/10.15406/mojfpt.2018.06.00209
[7] M. Usman, A. Sahar, M. Inam‐Ur‐Raheem, U. ur Rahman, A. Sameen, R. M. Aadil, Gelatin extraction from fish waste and potential applications in food sector, International Journal of Food Science Technology 57 (2022) 154-163. https://doi.org/10.1111/ijfs.15286
[8] G. Zhang, T. Liu, Q. Wang, L. Chen, J. Lei, J. Luo, G. Ma, Z. Su, Mass spectrometric detection of marker peptides in tryptic digests of gelatin: A new method to differentiate between bovine and porcine gelatin, Food Hydrocolloids 23 (2009) 2001-2007. https://doi.org/10.1016/j.foodhyd.2009.03.010
[9] R. M. H. Nhari, I. Hanish, N. F. Mokhtar, M. Hamid, A. F. El Sheikha, Authentication approach using enzyme-linked immunosorbent assay for detection of porcine substances, Quality Assurance and Safety of Crops & Foods 11 (2019) 449-457. https://doi.org/10.3920/QAS2018.1415
[10] D. M. Hashim, Y. B. C. Man, R. Norakasha, M. Shuhaimi, Y. Salmah, Z. A. Syahariza, Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins, Food Chemistry 118 (2010) 856-860. https://doi.org/10.1016/j.foodchem.2009.05.049
[11] N. Cebi, C. E. Dogan, A. E. Mese, D. Ozdemir, M. Arıcı, O. Sagdic, A rapid ATR-FTIR spectroscopic method for classification of gelatin gummy candies in relation to the gelatin source, Food Chemistry 277 (2019) 373-381. https://doi.org/10.1016/j.foodchem.2018.10.125
[12] M. Nemati, M. R. Oveisi, H. Abdollahi, O. Sabzevari, Differentiation of bovine and porcine gelatins using principal component analysis, Journal of Pharmaceutical and Biomedical Analysis 34 (2004) 485-492. https://doi.org/10.1016/S0731-7085(03)00574-0
[13] M. H. Yuswan, N. H. A. Jalil, H. Mohamad, S. Keso, N. A. Mohamad, T. S. T. M. Yusoff, N. F. Ismail, Y. N. Abdul Manaf, A. M. Hashim, M. N. M. Desa, Y. A. Yusof, S. Mustafa, Hydroxyproline determination for initial detection of halal-critical food ingredients (gelatin and collagen), Food Chemistry 337 (2021) 127762. https://doi.org/10.1016/j.foodchem.2020.127762
[14] O. D. Hendrickson, E. A. Zvereva, B. B. Dzantiev, A. V. Zherdev, Sensitive lateral flow immunoassay for the detection of pork additives in raw and cooked meat products, Food Chemistry 359 (2021) 129927. https://doi.org/10.1016/j.foodchem.2021.129927
[15] N. A. Tasrip, M. N. Mohd Desa, N. F. K. Mokhtar, N. Sajali, A. Mohd Hashim, M. E. Ali, C. Y. Kqueen, Rapid porcine detection in gelatin-based highly processed products using loop mediated isothermal amplification, Journal of Food Science and Technology 58 (2021) 4504-4513. https://doi.org/10.1007/s13197-020-04932-2
[16] S. Sultana, M. A. M. Hossain, A. Azlan, M. R. Johan, Z. Z. Chowdhury, M. E. Ali, TaqMan probe based multiplex quantitative PCR assay for determination of bovine, porcine and fish DNA in gelatin admixture, food products and dietary supplements, Food Chemistry 325 (2020) 126756. https://doi.org/10.1016/j.foodchem.2020.126756
[17] N. Salamah, Y. Erwanto, S. Martono, A. Rohman, The Employment of Real-Time Polymerase Chain Reaction for the Identification of Bovine Gelatin in Gummy Candy, Indonesian Journal of Pharmacy 33 (2022) 448-454. https://doi.org/10.22146/ijp.1970
[18] A. Venien, D. Levieux, Differentiation of Gelatins Using Polyclonal Antibodies Raised Against Tyrosylated Bovine and Porcine Gelatins, Journal of Immunoassay and Immunochemistry 26 (2005) 215-229. https://doi.org/10.1081/IAS-200062493
[19] F. Arshad, S. N. A. Zakaria, M. U. Ahmed, Nanohybrid nanozyme based colourimetric immunosensor for porcine gelatin, Food Chemistry 438 (2024) 137947. https://doi.org/10.1016/j.foodchem.2023.137947
[20] J. Adhikari, M. Rizwan, M. U. Ahmed, Development of a label-free electrochemiluminescence biosensor for the sensitive detection of porcine gelatin using carbon nanostructured materials, Sensors & Diagnostics 1 (2022) 968-976. https://doi.org/10.1039/D2SD00067A
[21] D. P. Wardani, M. Arifin, K. Abraha, The Revised Method of Quantitative Detection of Animal-Origin Bovine and Porcine Gelatin Difference Using Surface Plasmon Resonance Based Biosensor, Materials Science Forum 948 (2019) 146-152. https://doi.org/10.4028/www.scientific.net/MSF.948.146
[22] R. A. Medeiros, B. C. Lourencao, R. C. Rocha-Filho, O. Fatibello-Filho, Flow injection simultaneous determination of synthetic colorants in food using multiple pulse amperometric detection with a boron-doped diamond electrode, Talanta 99 (2012) 883-889. https://doi.org/10.1016/j.talanta.2012.07.051
[23] M. Chiku, K. Horisawa, N. Doi, H. Yanagawa, Y. Einaga, Electrochemical detection of tyrosine derivatives and protein tyrosine kinase activity using boron-doped diamond electrodes, Biosensors and Bioelectronics 26 (2010) 235-240. https://doi.org/10.1016/j.bios.2010.06.027
[24] A. Chrouda, A. Sbartai, F. Bessueille, L. Renaud, A. Maaref, N. Jaffrezic-Renault, Electrically addressable deposition of diazonium-functionalized antibodies on boron-doped diamond microcells for the detection of ochratoxin A, Analytical Methods 7 (2015) 2444-2451. https://doi.org/10.1039/C4AY02899F
[25] W. Białobrzeska, K. Dziąbowska, M. Lisowska, M. A. Mohtar, P. Muller, B. Vojtesek, R. Krejcir, R. O’neill, T. R. Hupp, N. Malinowska, E. Bięga, D. Bigus, Z. Cebula, K. Pala, E. Czaczyk, S. Żołędowska, D. Nidzworski, An ultrasensitive biosensor for detection of femtogram levels of the cancer antigen AGR2 using monoclonal antibody modified screen-printed gold electrodes, Biosensors 11 (2021) 184. https://doi.org/10.3390/bios11060184
[26] E. Mikuła, C. E. Silva, E. Kopera, K. Zdanowski, J. Radecki, H. Radecka, Highly sensitive electrochemical biosensor based on redox - Active monolayer for detection of anti-hemagglutinin antibodies against swine-origin influenza virus H1N1 in sera of vaccinated mice, BMC Veterinary Research 14 (2018) 328. https://doi.org/10.1186/s12917-018-1668-9
[27] M. I. H. L. Zein, A. Hardianto, I. Irkham, S. N. Zakiyyah, M. J. Devi, N. S. A. Manan, A. U. Ibrahim, Y. W. Hartati, Recent development of electrochemical and optical aptasensors for detection of antibiotics in food monitoring applications, Journal of Food Composition and Analysis 124 (2023) 105644. https://doi.org/10.1016/j.jfca.2023.105644
[28] Y. W. Hartati, D. R. Komala, D. Hendrati, S. Gaffar, A. Hardianto, Y. Sofiatin, H. H. Bahti, An aptasensor using ceria electrodeposited-screen-printed carbon electrode for detection of epithelial sodium channel protein as a hypertension biomarker, Royal Society Open Science 8 (2021) 202040. https://doi.org/10.1098/rsos.202040
[29] W. Białobrzeska, M. Ficek, B. Dec, S. Osella, B. Trzaskowski, A. Jaramillo-Botero, M. Pierpaoli, M. Rycewicz, Y. Dashkevich, T. Łęga, N. Malinowska, Z. Cebula, D. Bigus, D. Firganek, E. Bięga, K. Dziąbowska, M. Brodowski, M. Kowalski, M. Panasiuk, B. Gromadzka, S. Żołędowska, D. Nidzworski, K. Pyrć, W.A. Goddard, R. Bogdanowicz, Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation, Biosensors and Bioelectronics 209 (2022) 114222. https://doi.org/10.1016/j.bios.2022.114222
[30] A. Preechaworapun, T. A. Ivandini, A. Suzuki, A. Fujishima, O. Chailapakul, Y. Einaga, Development of amperometric immunosensor using boron-doped diamond with poly(o-aminobenzoic acid), Analytical Chemistry 80 (2008) 2077-2083. https://doi.org/10.1021/ac702146u
[31] T. F. H. Lestari, R. Setiyono, N. Tristina, Y. Sofiatin, Y. W. Hartati, The optimization of electrochemical immunosensors to detect epithelial sodium channel as a biomarker of hypertension, ADMET & DMPK 11 (2023) 211226. https://doi.org/10.5599/admet.1629
[32] Y. Nur, Y. W. Hartati, M. I. H. L. Zein, I. Irkham, S. Gaffar, T. Subroto, Cerium oxide nanoparticles-assisted aptasensor for chronic myeloid leukaemia detection, ADMET & DMPK 12 (2024) 623-635. https://doi.org/10.5599/admet.2404
[33] Q. Yu, Q. Wang, B. Li, Q. Lin, Y. Duan, Technological Development of Antibody Immobilization for Optical Immunoassays: Progress and Prospects, Critical Reviews in Analytical Chemistry 45 (2015) 62-75. https://doi.org/10.1080/10408347.2014.881249
[34] R. S. Syafira, M. J. Devi, S. Gaffar, Irkham, I. Kurnia, W. Arnafia, Y. Einaga, N. Syakir, A.R. Noviyanti, Y.W. Hartati, Hydroxyapatite-Gold Modified Screen-Printed Carbon Electrode for Selective SARS-CoV-2 Antibody Immunosensor, ACS Applied Bio Materials 7 (2024) 950-960. https://doi.org/10.1021/acsabm.3c00953
[35] R. Setiyono, M. I. H. L. Zein, P. Daud, A. Anggraeni, Y. W. Hartati, H. H. Bahti, A novel in-house built printed circuit board-ceria based electrochemical device for rapid detectioan of Epithelial Sodium Channel (ENaC), a hypertension biomarker, Sensors and Actuators Reports 7 (2024) 100200. https://doi.org/10.1016/j.snr.2024.100200
[36] M. I. H. L. Zein, C. Y. Kharismasari, A. Hardianto, S. N. Zakiyyah, R. Amalia, M. Ozsoz, M. Mirasoli, Irkham, Y. W. Hartati, A CRISPR / Cas12a electrochemical biosensing to detect pig mtDNA D-loop for ensuring food authenticity, Sensing and Bio-Sensing Research 47 (2025) 100755. https://doi.org/10.1016/j.sbsr.2025.100755
[37] N. W. S. Jufri, F. Kareem, M. A. Ansari, S. Taib, S. P. Hong, M. U. Ahmed, Label-free detection of porcine gelatin: A reliable immunosensor based on multi-walled carbon nanotubes and gold nano-urchins, Food Chemistry Advances 3 (2023) 100411. https://doi.org/10.1016/j.focha.2023.100411
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Irkham Irkham, Fadli Taufik Abdillah, Muhammad Ihda H. L. Zein, Adisyahputra, Nazwa Alya Zahra, Salma Nur Zakiyyah, Yeni Wahyuni Hartati

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Funding data
-
Universitas Padjadjaran
Grant numbers No. 1655/UN6.3.1/PT.00/2024