Simultaneous phosphates and nitrates removal from waste-waters by electrochemical process: Techno-economical assessment through response surface methodology

Original scientific paper

Authors

  • Judicaël Ano Laboratoire des Procédés Industriels de Synthèse, de l’Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët-Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire https://orcid.org/0000-0002-1287-0324
  • Bi Gouessé Henri Briton Laboratoire des Procédés Industriels de Synthèse, de l’Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët-Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire https://orcid.org/0000-0002-4465-9443
  • Alain Stéphane Assémian Laboratoire de Thermodynamique et de Physico-chimie du Milieu (LTPCM), UFR-SFA, Université Nangui-Abrogoua, 02 BP 801 Abidjan 01, Côte d’Ivoire https://orcid.org/0000-0001-7755-9775
  • Patrick Drogui Institut National de la Recherche Scientifique (INRS Eau Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec City, Canada https://orcid.org/0000-0002-3802-2729
  • Kouassi Benjamin Yao Laboratoire des Procédés Industriels de Synthèse, de l’Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët-Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire https://orcid.org/0000-0002-4048-6207
  • Kopoin Adouby Laboratoire des Procédés Industriels de Synthèse, de l’Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët-Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire

DOI:

https://doi.org/10.5599/jese.2052

Keywords:

Electrocoagulation, monopolar configuration, phosphates, nitrates, optimization
Graphical Abstract

Abstract

In this study, a new multiobjective optimization of the simultaneous removal of phosphates and nitrates by electrocoagulation was studied using the Box-Behnken design. Ten aluminium electrodes, connected in a monopolar configuration in a batch reactor, were immersed in synthetic wastewater and then in real wastewater. The optimal conditions and the effects of parameters (current intensity, electrolysis time and initial pH) on phosphate and nitrate removal, the formation of by-products, and the operating cost were assessed in the case of synthetic wastewater. This optimization allowed to eliminate 89.21 % of phos­phates, 69.06 % of nitrates with an operating cost of 3.44 USD m-3 against 13.67 mg L-1 of ammonium generated. Optimal conditions applied to real domestic wastewater made it possible to remove 93 % of phosphates and 90.3 % of nitrates with an ammonium residual of 30.9 mg L-1. The addition of sodium chloride reduced the residual ammonium content to 2.95 mg L-1. Further, XRD analysis of the sludge showed poor crystal structure and the FTIR spectrum suggested that the phosphate is removed by adsorption and co-precipitation.

Downloads

Download data is not yet available.

References

nutrient release in urban areas of sub-Saharan Africa — A review, Science of The Total Environment 408 (2010) 447-455. https://doi.org/10.1016/j.scitotenv.2009.10.020

S. Wiriyathamcharoen, S. Sarkar, P. Jiemvarangkul, T. T. Nguyen, W. Klysuban, S. Padungthon, Synthesis optimization of hybrid anion exchanger containing triethylamine functional groups and hydrated Fe(III) oxide nanoparticles for simultaneous nitrate and phosphate removal, Chemical Engineering Journal 381 (2020) 122671. https://doi.org/10.1016/j.cej.2019.122671

S. S. Lin, S. L. Shen, A. Zhou, H. M. Lyu, Assessment and management of lake eutrophication: A case study in Lake Erhai, China, Science of The Total Environment 751 (2020) 141618. https://doi.org/10.1016/j.scitotenv.2020.141618

M. Velu, B. Balasubramanian, P. Velmurugan, H. Kamyab, A. V. Ravi, S. Chelliapan, C. T. Lee, J. Palaniyappan, Fabrication of nanocomposites mediated from aluminium nanoparticles/Moringa oleifera gum activated carbon for effective photocatalytic removal of nitrate and phosphate in aqueous solution, Journal of Cleaner Production 281 (2020) 124553. https://doi.org/10.1016/j.jclepro.2020.124553

H. Dong, C. S. Shepsko, M. German, A. K. Sengupta, Hybrid nitrate selective resin (NSR-NanoZr) for simultaneous selective removal of nitrate and phosphate (or fluoride) from impaired water sources, Journal of Environmental Chemical Engineering 8 (2020) 103846. https://doi.org/10.1016/j.jece.2020.103846

I. A. Kumar, N. Viswanathan, Fabrication of zirconium (IV) cross-linked alginate/kaolin hybrid beads for nitrate and phosphate retention, Arabian Journal of Chemistry 13 (2020) 4111-4125. https://doi.org/10.1016/j.arabjc.2019.06.006

M. Ghazouani, L. Bousselmi, H. Akrout, Combined electrocoagulation and electrochemical treatment on BDD electrodes for simultaneous removal of nitrates and phosphates, Journal of Environmental Chemical Engineering 8 (2020) 104509. https://doi.org/10.1016/j.jece.2020.104509

J. Y. Park, Y. J. Yoo, Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose, Applied Microbiology and Biotechnology 82 (2009) 415-429. https://doi.org/10.1007/s00253-008-1799-1

J. Ano, B. G. H. Briton, K. E. Kouassi, K. Adouby, Nitrate removal by electrocoagulation process using experimental design methodology: A techno-economic optimization, Journal of Environmental Chemical Engineering 8 (2020) 104292. https://doi.org/10.1016/j.jece.2020.104292

K. T. K. M. Prashantha, T. R. Mandlimath, P. Sangeetha, S. K. Revathi, S. K. Ashok Kumar, Nanoscale materials as sorbents for nitrate and phosphate removal from water, Environmental Chemistry Letters 16 (2018) 389-400. https://doi.org/10.1007/s10311-017-0682-7

S. Pulkka, M. Martikainen, A. Bhatnagar, M. Sillanpää, Electrochemical methods for the removal of anionic contaminants from water - A review, Separation and Purification Technology 132 (2014) 252-271. https://doi.org/10.1016/j.seppur.2014.05.021

D. Xu, Y. Li, L. Yin, Y. Ji, J. Niu, Y. Yu, Electrochemical removal of nitrate in industrial wastewater, Frontiers of Environmental Science and Engineering 12 (2018) 9. https://doi.org/10.1007/s11783-018-1033-z

D. T. Moussa, M. H. El-Naas, M. Nasser, M. J. Al-Marri, A comprehensive review of electrocoagulation for water treatment: Potentials and challenges, Journal of Environmental Management 186 (2017) 24-41. https://doi.org/10.1016/j.jenvman.2016.10.032

M. Alimohammadi, M. Askari, M. H. Dehghani, A. Dalvand, R. Saeedi, K. Yetilmezsoy, B. Heibati, G. McKay, Elimination of natural organic matter by electrocoagulation using bipolar and monopolar arrangements of iron and aluminum electrodes, International Journal of Environmental Science and Technology 14 (2017) 2125-2134. https://doi.org/10.1007/s13762-017-1402-3

O. Dia, P. Drogui, G. Buelna, R. Dubé, Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment, Waste Management 75 (2018) 391-399. https://doi.org/10.1016/j.wasman.2018.02.016

S. Boinpally, A. Kolla, J. Kainthola, R. Kodali, J. Vemuri, A state-of-the-art review of the electrocoagulation technology for wastewater treatment, Water Cycle 4 (2023) 26-36. https://doi.org/10.1016/j.watcyc.2023.01.001

A. Othmani, A. Kadier, R. Singh, C. A. Igwegbe, M. Bouzid, M. O. Aquatar, W.A. Khanday, M. E. Bote, F. Damiri, Ö. Gökkuş, F. Sher, A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment, Environmental Research 215 (2022) 114294. https://doi.org/10.1016/j.envres.2022.114294

S. Manikandan, R. Saraswathi, Electrocoagulation technique for removing Organic and Inorganic pollutants (COD) from the various industrial effluents: An overview, Environmental Engineering Research 28 (2023) 220231. https://doi.org/10.4491/eer.2022.231

H. Kamyab, M. A. Yuzir, N. Abdullah, L. M. Quan, F. A. Riyadi, R. Marzouki, Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review, Sustainability 14 (2022) 1985. https://doi.org/10.3390/su14041985

K. S. Hashim, R. Al Khaddar, N. Jasim, A. Shaw, D. Phipps, P. Kot, M. O. Pedrola, A. W. Alattabi, M. Abdulredha, R. Alawsh, Electrocoagulation as a green technology for phosphate removal from river water, Separation and Purification Technology 210 (2019) 135-144. https://doi.org/10.1016/j.seppur.2018.07.056

M. Ebba, P. Asaithambi, E. Alemayehu, Development of electrocoagulation process for wastewater treatment: optimization by response surface methodology, Heliyon 8 (2022) e09383. https://doi.org/10.1016/j.heliyon.2022.e09383

P. I. Omwene, M. Kobya, Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: A comparative study, Process Safety and Environmental Protection 116 (2018) 34-51. https://doi.org/10.1016/j.psep.2018.01.005

K. Govindan, M. Noel, R. Mohan, Removal of nitrate ion from water by electrochemical approaches, Journal of Water Process Engineering 6 (2015) 58-63. https://doi.org/10.1016/j.jwpe.2015.02.008

T. Yehya, M. Chafi, W. Balla, C. Vial, A. Essadki, B. Gourich, Experimental analysis and modeling of denitrification using electrocoagulation process, Separation and Purification Technology 132 (2014) 644-654. https://doi.org/10.1016/j.seppur.2014.05.022

J. Ano, A. S. Assémian, Y. A. Yobouet, K. Adouby, P. Drogui, Electrochemical removal of phosphate from synthetic effluent: A comparative study between iron and aluminum by using experimental design methodology, Process Safety and Environmental Protection 129 (2019) 184-195. https://doi.org/10.1016/j.psep.2019.07.003

E. Karamati-Niaragh, M. R. A. Moghaddam, M. M. Emamjomeh, E. Nazlabadi, Evaluation of direct and alternating current on nitrate removal using a continuous electrocoagulation process: Economical and environmental approaches through RSM, Journal of Environmental Management 230 (2019) 245-254. https://doi.org/10.1016/j.jenvman.2018.09.091

A. Dura, C. B. Breslin, Electrocoagulation using aluminium anodes activated with Mg, In and Zn alloying elements, Journal of Hazardous Materials 366 (2019) 39-45. https://doi.org/10.1016/j.jhazmat.2018.11.094

A. Attour, N. B. Grich, M. M. Tlili, M. B. Amor, F. Lapicque, J.-P. Leclerc, Intensification of phosphate removal using electrocoagulation treatment by continuous pH adjustment and optimal electrode connection mode, Desalination and Water Treatment 57 (2016) 13255-13262. https://doi.org/10.1080/19443994.2015.1057537

A. Attour, M. Touati, M. Tlili, M. B. Amor, F. Lapicque, J.-P. Leclerc, Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes, Separation and Purification Technology 123 (2014) 124-129. https://doi.org/10.1016/j.seppur.2013.12.030

E. Karamati-Niaragh, M. R. A. Moghaddam, M. M. Emamjomeh, Techno-economical evaluation of nitrate removal using continuous flow electrocoagulation process: optimization by Taguchi model, Water Supply 17 (2017) 1703-1711. https://doi.org/10.2166/ws.2017.073

K. S. Hashim, I. A. Idowu, N. Jasim, R. Al Khaddar, A. Shaw, D. Phipps, P. Kot, M. O. Pedrola, A. W. Alattabi, M. Abdulredha, R. Alwash, K. H. Teng, K. H. Joshi, M. H. Aljefery, Removal of phosphate from River water using a new baffle plates electrochemical reactor, MethodsX 5 (2018) 1413-1418. https://doi.org/10.1016/j.mex.2018.10.024

M. Guo, L. Feng, Y. Liu, L. Zhang, Electrochemical simultaneous denitrification and removal of phosphorus from the effluent of a municipal wastewater treatment plant using cheap metal electrodes, Environmental Science: Water Research and Technology 6 (2020) 1095-1105. https://doi.org/10.1039/d0ew00049c

A. Ziouvelou, A. G. Tekerlekopoulou, D. V. Vayenas, A hybrid system for groundwater denitrification using electrocoagulation and adsorption, Journal of Environmental Management 249 (2019) 109355. https://doi.org/10.1016/j.jenvman.2019.109355

A. K. Benekos, M. Tsigara, S. Zacharakis, I. E. Triantaphyllidou, A. G. Tekerlekopoulou, A. Katsaounis, D.V. Vayenas, Combined electrocoagulation and electrochemical oxidation treatment for groundwater denitrification, Journal of Environmental Management 285 (2021) 112068. https://doi.org/10.1016/j.jenvman.2021.112068

A. K. Benekos, F. E. Tziora, A. G. Tekerlekopoulou, S. Pavlou, Y. Qun, A. Katsaounis, D. V. Vayenas, Nitrate removal from groundwater using a batch and continuous flow hybrid Fe-electrocoagulation and electrooxidation system, Journal of Environmental Management 297 (2021) 113387. https://doi.org/10.1016/j.jenvman.2021.113387

K. S. Hashim, A. H. Hussein, S. L. Zubaidi, P. Kot, L. Kraidi, R. Alkhaddar, A. Shaw, R. Alwash, Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method, Journal of Physics: Conference Series 1294 (2019) 072017. https://doi.org/10.1088/1742-6596/1294/7/072017

S. L. C. Ferreira, V. A. Lemos, V. S. de Carvalho, E. G. P. da Silva, A. F. S. Queiroz, C. S. A. Felix, D. L. F. da Silva, G. B. Dourado, R. V. Oliveira, Multivariate optimization techniques in analytical chemistry - an overview, Microchemical Journal 140 (2018) 176-182. https://doi.org/10.1016/j.microc.2018.04.002

B. G. H. Briton, L. Duclaux, Y. Richardson, K. B. Yao, L. Reinert, Y. Soneda, Optimization of total organic carbon removal of a real dyeing wastewater by heterogeneous Fenton using response surface methodology, Desalination and Water Treatment 136 (2018) 186-198. https://doi.org/10.5004/dwt.2018.22845

L. S. Thakur, P. Mondal, Techno-economic evaluation of simultaneous arsenic and fluoride removal from synthetic groundwater by electrocoagulation process: optimization through response surface methodology, Desalination and Water Treatment 57 (2016) 28847-28863. https://doi.org/10.1080/19443994.2016.1186564

E. Nazlabadi, M. R. A. Moghaddam, E. Karamati-Niaragh, Simultaneous removal of nitrate and nitrite using electrocoagulation/floatation (ECF): A new multi-response optimization approach, Journal of Environmental Management 250 (2019) 109489. https://doi.org/10.1016/j.jenvman.2019.109489

N. Saigaa, S. Bouguessa, W. Boukhedena, M. Nacer, A. Nadji, A. Gouasmia, Optimization of the inhibition corrosion of carbon steel in an acidic medium by a novel eco-friendly inhibitor Asphodelus ramosus using response surface methodology, Journal of Electrochemical Science and Engineering 13 (2023) 469-490. https://doi.org/10.5599/jese.1628

W. N. F. W. Hassan, M. A. Ismail, H. S. Lee, M. S. Meddah, J. K. Singh, M. W. Hussin, M. Ismail, Mixture optimization of high-strength blended concrete using central composite design, Construction and Building Materials 243 (2020) 118251. https://doi.org/10.1016/j.conbuildmat.2020.118251

M. Majlesi, S. M. Mohseny, M. Sardar, S. Golmohammadi, A. Sheikhmohammadi, Improvement of aqueous nitrate removal by using continuous electrocoagulation/electroflotation unit with vertical monopolar electrodes, Sustainable Environment Research 26 (2016) 287-290. https://doi.org/10.1016/j.serj.2016.09.002

S. Garcia-Segura, M. M. S. G. Eiband, J. V. de Melo, C. A. Martínez-Huitle, Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies, Journal of Electroanalytical Chemistry 801 (2017) 267-299. https://doi.org/10.1016/j.jelechem.2017.07.047

V. Kuokkanen, T. Kuokkanen, J. Rämö, U. Lassi, J. Roininen, Removal of phosphate from wastewaters for further utilization using electrocoagulation with hybrid electrodes - Techno-economic studies, Journal of Water Process Engineering 8 (2015) e50-e57. https://doi.org/10.1016/j.jwpe.2014.11.008

M. M. Emamjomeh, H. A. Jamali, M. Moradnia, Optimization of Nitrate Removal Efficiency and Energy Consumption Using a Batch Monopolar Electrocoagulation: Prediction by RSM Method, Journal of Environmental Engineering 143 (2017) 04017022. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001210

M. H. Abdel-Aziz, E. S. Z. El-Ashtoukhy, M. S. Zoromba, M. Bassyouni, G.H. Sedahmed, Removal of nitrates from water by electrocoagulation using a cell with horizontally oriented Al serpentine tube anode, Journal of Industrial and Engineering Chemistry 82 (2020) 105-112. https://doi.org/10.1016/j.jiec.2019.10.001

M. Amarine, B. Lekhlif, M. Sinan, A. El Rharras, J. Echaabi, Treatment of nitrate-rich groundwater using electrocoagulation with aluminum anodes, Groundwater for Sustainable Development 11 (2020) 100371. https://doi.org/10.1016/j.gsd.2020.100371

K. K. Garg, B. Prasad, Development of Box Behnken design for treatment of terephthalic acid wastewater by electrocoagulation process: Optimization of process and analysis of sludge, Journal of Environmental Chemical Engineering 4 (2016) 178-190. https://doi.org/10.1016/j.jece.2015.11.012

D. Tibebe, Y. Kassa, A.N. Bhaskarwar, Treatment and characterization of phosphorus from synthetic wastewater using aluminum plate electrodes in the electrocoagulation process, BMC Chemistry 13 (2019) 107. https://doi.org/10.1186/s13065-019-0628-1

Published

01-10-2023 — Updated on 01-10-2023

How to Cite

Ano, J., Briton, B. G. H., Assémian, A. S., Drogui, P., Yao, K. B., & Adouby, K. (2023). Simultaneous phosphates and nitrates removal from waste-waters by electrochemical process: Techno-economical assessment through response surface methodology: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(6), 1081–1096. https://doi.org/10.5599/jese.2052

Issue

Section

Electrochemical Engineering