Electrochemical and UV-visible spectroscopic investigation of anthranilic acid interaction with DNA

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.2738

Keywords:

DNA binding, binding energy, bioactive compound, hydrogen-bonded network, cyclic voltammetry

Abstract

The interaction between anthranilic acid (Aa) and DNA was studied by cyclic voltammetry and UV-visible spectroscopy. Cisplatin (Cis), a drug that is known to interact with DNA, was used as a reference. The electrochemical response showed that the anodic peak potential of Aa shifted downward by 35.1 mV (from 934.4 to 899.3 mV) in the presence of DNA (18 µM). The shift suggests the occurrence of electrostatic interactions between Aa and the DNA backbone. Binding constant (7.08×104 M⁻¹) and free energy (-26.85 kJ mol-1) for Aa-DNA were derived from suppressed anodic peak current density, while Cis was found to have stronger binding (19.49×10⁴ M⁻¹) under identical conditions. UV-visible spectroscopy confirmed hypochromicity at 324 nm for Aa, which is consistent with groove binding, while the distinct mechanism of Cis most likely involves covalent cross-linking. Larger binding site size of Aa (5.76 base pairs) and decreased diffusion coefficients compared with Cis smaller footprint (0.56 base pairs), pointed to differences in mechanisms. These results highlight anthranilic acid as a promising DNA-targeting agent with potential applications in antimicrobial and anticancer drug development, providing a comparative context with the well-established pharmacology of cisplatin.

Downloads

Download data is not yet available.

References

[1] P. Prasher, M. Sharma. Medicinal chemistry of anthranilic acid derivatives: A mini review. Drug Development Research 82 (2021) 945-958. https://doi.org/10.1002/DDR.21842

[2] C. Shaw, M. Hess, B.C. Weimer. Microbial-Derived Tryptophan Metabolites and Their Role in Neurological Disease: Anthranilic Acid and Anthranilic Acid Derivatives, Microorganisms 11 (2023) 1825. https://doi.org/10.3390/microorganisms11071825

[3] S. R. Alizadeh, M. A. Ebrahimzadeh. Antiviral Activities of Pyridine Fused and Pyridine Containing Heterocycles, A Review (from 2000 to 2020). Mini-Reviews in Medicinal Chemistry 21 (2021) 2584-2611. https://doi.org/10.2174/1389557521666210126143558

[4] T. A. Stammers, R. Coulombe, M. Duplessis, G. Fazal, A. Gagnon, M. Garneau, S. Goulet, A. Jakalian, S. Laplante, J. Rancourt, B. Thavonekham, D. Wernic, G. Kukolj, P. L. Beaulieu. Anthranilic acid-based Thumb Pocket 2 HCV NS5B polymerase inhibitors with sub-micromolar potency in the cell-based replicon assay, Bioorganic & Medicinal Chemistry Letters 23 (2013) 6879-6885. https://doi.org/10.1016/j.bmcl.2013.09.102

[5] M. Sinreih, I. Sosi, N. Berani, S. Turk, A.O. Adeniji, T. M. Penning, T. L. Riner, S. Gobec. N-Benzoyl anthranilic acid derivatives as selective inhibitors of aldo-keto reductase AKR1C3. Bioorganic & Medicinal Chemistry Letters 22 (2012) 5948-5951. https://doi.org/10.1016/j.bmcl.2012.07.062

[6] T. Nittoli, K. Curran, S. Insaf, M. DiGrandi, M. Orlowski, R. Chopra, A. Agarwal, A.Y.M. Howe, A. Prashad, M.B. Floyd, B. Johnson, A. Sutherland, K. Wheless, B. Feld, J. O’Connell, T.S. Mansour, J. Bloom, Identification of anthranilic acid derivatives as a novel class of allosteric inhibitors of hepatitis C NS5B polymerase, Journal of Medicinal Chemistry 50 (2007) 2108-2116. https://doi.org/10.1021/jm061428x

[7] S. M. Nelson, L. R. Ferguson, W. A. Denny, Non-covalent ligand/DNA interactions: Minor groove binding agents, Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis 623 (2007) 24-40. https://doi.org/10.1016/j.mrfmmm.2007.03.012

[8] J. Lah, G. Vesnaver, Energetic diversity of DNA minor-groove recognition by small molecules displayed through some model ligand-DNA systems, Journal of Molecular Biology 342 (2004) 73-89. https://doi.org/10.1016/j.jmb.2004.07.005

[9] D. Fabris, A Role for the MS Analysis of Nucleic Acids in the Post-Genomics Age. Journal of the American Society for Mass Spectrometry 21 (2010) 1-13. https://doi.org/10.1016/j.jasms.2009.09.006

[10] C.L. Mazzitelli, J.S. Brodbelt, J.T. Kern, M. Rodriguez, S.M. Kerwin, Evaluation of binding of perylene diimide and benzannulated perylene diimide ligands to DNA by electrospray ionization mass spectrometry, Journal of the American Society for Mass Spectrometry 17 (2006) 593-604. https://doi.org/10.1016/j.jasms.2005.12.011

[11] T. Urathamakul, J.L. Beck, M.M. Sheil, J.R. Aldrich-Wright, S.F. Ralph, A mass spectrometric investigation of non-covalent interactions between ruthenium complexes and DNA, Dalton Transactions (2004) 2683-2690. https://doi.org/10.1039/b406889k

[12] D. Kwon, K. Kim, J. Kwaka, Electrochemical DNA hybridization detection using DNA cleavage, Electroanalysis 20 (2008) 1204-1208. https://doi.org/10.1002/ELAN.200704166

[13] S. G. Chavan, P. R. Rathod, A. Koyappayil, S. Hwang, M. H. Lee, Recent advances of electrochemical and optical point-of-care biosensors for detecting neurotransmitter serotonin biomarkers, Biosensors and Bioelectronics 267 (2025) 116743. https://doi.org/10.1016/J.BIOS.2024.116743

[14] M. Demeunynck, C. Bailly, W. D. Wilson, Small Molecule DNA and RNA Binders: From Synthesis to Nucleic Acid Complexes, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2002, p. 224.

[15] X.W. Qing, F. Gao, K. Jiao, Voltammetric studies on the recognition of a copper complex to single- and double-stranded DNA and its application in gene biosensor, Electroanalysis 20 (2008) 2096-2101. https://doi.org/10.1002/ELAN.200804291

[16] H. Fan, R. Xing, Y. Xu, M. Chen, Q. Wang, P. He, Y. Fang, A competitor-switched electrochemical sensor for detection of DNA, Chinese Journal of Chemistry 28 (2010) 1978-1982. https://doi.org/10.1002/CJOC.201090330

[17] S. N. Topkaya, A.E. Cetin. Determination of Electrochemical Interaction between 2-(1H-benzimidazol-2-yl) Phenol and DNA Sequences, Electroanalysis 31 (2019) 1571-1578. https://doi.org/10.1002/ELAN.201900199

[18] T. Lanez, H. Benaicha, E. Lanez, M. Saidi, Electrochemical, spectroscopic and molecular docking studies of 4-methyl-5-((phenylimino)methyl)-3H- and 5-(4-fluorophenyl)-3H-1,2-dithiole-3-thione interacting with DNA, Journal of Sulfur Chemistry 39 (2018) 7688. https://doi.org/10.1080/17415993.2017.1391811

[19] E. Lanez, L. Bechki, T. Lanez. Computational Molecular Docking, Voltammetric and Spectroscopic DNA Interaction Studies of 9N-(Ferrocenylmethyl)-adenine, Chemistry & Chemical Technology 13 (2019) 11-17. https://doi.org/10.23939/chcht13.01.011

[20] J. A. Glasel, Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios, Biotechniques 18 (1995) 62-63.

[21] R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, B.U. Nair, DNA cleavage by a chromium (III) complex, Biochemical and Biophysical Research Communications 271 (2000) 731-734. https://doi.org/10.1006/bbrc.2000.2707

[22] X. Lu, K. Zhu, M. Zhang, H. Liu, J. Kang, Voltammetric studies of the interaction of transition-metal complexes with DNA, Journal of Biochemical and Biophysical Methods 52 (2002) 189-200. https://doi.org/10.1016/S0165-022X(02)00074-X

[23] M. Aslanoglu, G. Ayne, Voltammetric studies of the interaction of quinacrine with DNA, Analytical and Bioanalytical Chemistry 380 (2004) 658-663. https://doi.org/10.1007/s00216-004-2797-5

[24] G. C. Zhao, J. J. Zhu, J. J. Zhang, H.Y. Chen, Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin, Analytica Chimica Acta 394 (1999) 337-344. https://doi.org/10.1016/S0003-2670(99)00292-5

[25] M. Aslanoğlu, N. Öge, Voltammetric UV Absorption and Viscometric Studies of the Interaction of Norepinephrine with DNA, Turkish Journal of Chemistry 29 (2005) 477-485.

[26] B. L. Baldock, J. E. Hutchison, UV-Visible Spectroscopy-Based Quantification of Unlabeled DNA Bound to Gold Nanoparticles, Analytical Chemistry 88 (2016) 12072-12080. https://doi.org/10.1021/ACS.ANALCHEM.6B02640

[27] A. A. Phadte, S. Banerjee, N. A. Mate, A. Banerjee, Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochemistry and Biophysics Reports 18 (2019) 100629. https://doi.org/10.1016/J.BBREP.2019.100629

[28] B. Heidary Alizadeh, G. Dehghan, V. D. Ahmadi, S. Moghimi, A. Asadipour, A. Foroumadi. Spectroscopic and Molecular Docking Studies on DNA Binding Interaction of Podophyllotoxin, Journal of Sciences, Islamic Republic of Iran 29 (2018) 121-127. https://doi.org/10.22059/jsciences.2018.65018

[29] Y. Pan, Y. Wang, C. Fuqua, L. Chen, In vivo analysis of DNA binding and ligand interaction of BlcR, an IclR-type repressor from Agrobacterium tumefaciens, Microbiology 159 (2013) 814-822. https://doi.org/10.1099/MIC.0.065680-0

[30] E. J. G. Peterman, P. Gross, Biophysics of DNA-ligand interactions resolved by force: Comment on “Biophysical characterization of DNA binding from single molecule force measurements” by K. R. Chaurasiya et al., Physics of Life Reviews 7 (2010) 344-345. https://doi.org/10.1016/J.PLREV.2010.06.005

[31] A. Yahiaoui, A. Messai, T. Lanez, E. Lanez, Voltametric and molecular docking investigations of ferrocenylmethylaniline and its N-acetylated derivative interacting with DNA. Journal of Electrochemical Science and Engineering 14 (2024) 135-145. https://doi.org/10.5599/jese.2061

[32] M. J. Waring, Complex formation between ethidium bromide and nucleic acids, Journal of Molecular Biology 13 (1965) 269-282. https://doi.org/10.1016/S0022-2836(65)80096-1

[33] A. V. Ghule, R. K. Chen, S. H. Tzing, J. Lo, Y. C. Ling, Simple and rapid method for evaluating stickiness of cotton using thermogravimetric analysis, Analytica Chimica Acta 502 (2004) 251-256. https://doi.org/10.1016/J.ACA.2003.10.021

[34] J. K. Barton, L. A. Basile, A. Danishefsky, A. Alexandrescu, Chiral probes for the handedness of DNA helices: enantiomers of tris(4,7-diphenylphenanthroline) ruthenium (II), Proceedings of the National Academy of Sciences 81 (1984) 1961-1965. https://doi.org/10.1073/PNAS.81.7.1961

[35] C. Brett, A. M. Brett, Electrochemistry: Principles, Methods and Applications, Oxford Science University Publications, Oxford, 1993. ISBN 9780198553885

[36] J. H. Hildebrand, H. A. Benesi. Interaction of iodine with aromatic hydrocarbons, Nature 164 (1949) 963. https://doi.org/10.1038/164963b0

Downloads

Published

06-05-2025

Issue

Section

Bioelectrochemistry

How to Cite

Electrochemical and UV-visible spectroscopic investigation of anthranilic acid interaction with DNA: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(4), 2738. https://doi.org/10.5599/jese.2738

Similar Articles

1-10 of 314

You may also start an advanced similarity search for this article.