Characterization of graphite-epoxy composite electrodes for free electrochemical detection of adenine and guanine in DNA

Original scientific paper

  • Leodanis Correa Fajardo Department of Analytical Chemistry, Faculty of Chemistry, University of Havana, Zapata s/n between G and Carlitos Aguirre, Vedado, Plaza de la Revolución, CP 10400. Havana, Cuba https://orcid.org/0000-0002-3990-8193
  • Abel Ibrahim Balbin Tamayo Department of Analytical Chemistry, Faculty of Chemistry, University of Havana, Zapata s/n between G and Carlitos Aguirre, Vedado, Plaza de la Revolución, CP 10400. Havana, Cuba https://orcid.org/0000-0002-8178-004X
  • Ana Margarita Esteva Guas Department of Analytical Chemistry, Faculty of Chemistry, University of Havana, Zapata s/n between G and Carlitos Aguirre, Vedado, Plaza de la Revolución, CP 10400. Havana, Cuba
Keywords: electrochemical sensors, DNA oligonucleotides, graphite-polymer, thermogravimetric analysis
Graphical Abstract

Abstract

Graphite-epoxy composites (GECs) are alternative construction materials for electro­chemical sensors. For these materials, the electron transfer rate constant of some redox reaction depends additionally on the stoichiometric relationship between the insulating and conducting phases of the composite. In this work, the influence of dif­fe­rent ratios of araldite/hardener/graphite on the electrochemical properties of GEC electrodes is evaluated for the simultaneous determination of adenine and guanine in the single chain DNA, using the square wave voltammetry technique. Six GEC electro­des were prepared with different ratios of components, and electrochemically charac­terized by cyclic voltammetry in the presence of ferri/ferrocyanide redox couple as a redox probe. GEC electrodes that showed the best electrochemical responses of redox probe were characterized by thermogravimetric analysis (TGA) and used for the simul­taneous determination of free adenine and guanine in a solution, and DNA oligonu­cle­otides. The best results were obtained for GEC electrodes containing twice higher volu­me of araldite resin with respect to the hardener. TGA analysis revealed presence of 15-26 % of resin for these GEC electrodes. The obtained results revealed potential appl­ication of these GEC electrodes as DNA sensors based on the oxidation signal of guanine.

Downloads

Download data is not yet available.

References

M. I. Pividori, S. Alegret, Comprehensive Analytical Chemistry 49 (2007) 439-466. https://doi.org/10.1016/S0166-526X(06)49021-8

A. I. Balbin Tamayo, L. S. López Rizo, M. Blanco de Armas, H. Yamanaka, A. M. Esteva Guaz International Journal of Biosensors & Bioelectronics 4(5) (2018) 217-219. https://doi.org/10.15406/ijbsbe.2018.04.00129

M. S. Ozsoz (ed.), Electrochemical DNA Biosensors, 1st Edition, Jenny Stanford Publ., New York, 2012. https://doi.org/10.1201/b11988

E. Zacco, M. Pividori, X. Llopis, M. del Valle, S. Alegret, Journal of Immunological Methods 286(1-2) (2004) 35-46. https://doi.org/10.1016/j.jim.2003.11.014

D. O'Hare, J. V. Macpherson, A. Willows, Electrochemistry Communications 4(3) (2002) 245-250. https://doi.org/10.1016/S1388-2481(02)00265-5

M. Wissler, Journal of Power Sources 156(2) (2006) 142-150. http://dx.doi.org/10.1016/j.jpowsour.2006.02.064

V. N. Kiryushov, L. I. Skvortsova, T. P. Aleksandrova, Journal of Analytical Chemistry 66(5) (2011) 510-514. https://doi.org/10.1134/S1061934811050091

M. I. Pividori, A. Merkoçi, S. Alegret, Biosensors and Bioelectronics 19(5) (2003) 473-484. https://doi.org/10.1016/S0956-5663(03)00222-7

A. J. C. Aphesteguy, S. E. Jacobo, Avances en Ciencias e Ingeniería 4(3) (2013) 37-48.

C. M. F. Calixto, R. K. Mendes, A. C. de Oliveira, L. A. Ramos, P. Cervini, É. T. G. Cavalheiro, Materials Research 10(2) (2007) 109-114. https://doi.org/10.1590/S1516-14392007000200003

L. S. López-Rizo, A. I. Balbin-Tamayo, M. Blanco-de-Armas, A. M. Esteva-Guas, Revista Cubana de Hematología, Inmunología y Hemoterapia 33 (2017). http://www.revhematologia.sld.cu/index.php/hih/article/download/785/745

A. I. Balbin Tamayo, Desarrollo de un nuevo electrodo epoxi-grafito para la detección de AND, PhD Thesis, Universidad de La Habana, 2017.

A. I. Balbin Tamayo, L. S. Riso, A. Pérez Gramatges, P. A. Marini Farías, A. M. Esteva Guas, H. Yamanaka, Sensors & Transducers 202(7) (2016) 59-65. https://www.sensorsportal.com/HTML/DIGEST/july_2016/Vol_202/P_2841.pdf

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Second Edition, J. Willey & Sons Inc., 2001. p. 482. ISBN 0-471-04372-9

Z. Q. Gong, A. N. A. Sujari, S. Ab Ghani, Electrochimica Acta 65 (2012) 257-265. https://doi.org/10.1016/j.electacta.2012.01.057

R. Montes, J. Bartrolí, F. Céspedes, M. Baeza, Journal of Electroanalytical Chemistry 733 (2014) 69-76. https://doi.org/10.1016/j.jelechem.2014.09.022

M. M. Barsan, M. E. Ghica, C. M. A. Brett, Analytica Chimica Acta 881 (2015) 1-23. http://dx.doi.org/10.1016/j.aca.2015.02.059

X. Ba, L. Luo, Y. Ding, Z. Zhang, Y. Chu, B. Wang, X. Ouyang, Analytica Chimica Acta 752 (2012) 94-100. https://doi.org/10.1016/j.aca.2012.09.031

A. X. H. Yong, G. D. Sims, S. J. P. Gnaniah, S. L. Ogin, P. A. Smith, Advanced Manufacturing: Polymer & Composites Science 3(2) (2017) 43-51. https://doi.org/10.1080/20550340.2017.1315908

A. C. O. Santana, E. F. Southgate, J. P. B. G. Mendes, J. Dweck, E. M. Alhadeff, N. I. B. Ramirez, Journal of Electrochemical Science and Engineering 4(4) (2014) 165-175. https://doi.org/10.5599/jese.2014.0057.

A. L. M. Azevedo, P.S. de Oliviera, E. A. Ponzio, F. S. Semaan, IOP Conference Series: Materials Science and Engineering 97(1) (2015) 012008. https://doi.org/10.1088/1757-899X/97/1/012008

A. I. Balbin-Tamayo, L. S. Riso, A. M. Esteva Guas, P. A. Mardini-Farias, A. Pérez-Gramtages, Revista Cubana de Química 29(1) (2017) 115-132. https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/1996/1989

OligoEvaluator. http://www.oligoevaluator.com/OligoCalcServlet (Accessed January 2021)

R. G. Compton, C. E. Banks, Understanding Voltammetry, Third edition, World Scientific, 2018. ISBN 17-8634-529-3

J. M. Pingarrón Carrazón, P. Sánchez Batenero, Química Electroanalítica: Fundamentos y Aplicaciones, Síntesis, Madrid, 1999. ISBN 84-7738-663-3

P. Zanello, Inorganic Electrochemistry: Theory, Practice and Application, Royal Society of Chemistry, 2003. https://doi.org/10.1039/9781847551146

S. H. Goodman (ed.), Handbook of Thermoset Plastics, Noyes Publications, 1998. ISBN 15-9124-094-8

J. Wang, Analytical Electrochemistry, Second Edition, Wiley-VCH, 2001. ISBN 0471-28272-3

R. S. Nicholson, Analytical Chemistry 37(11) (1965) 1351-1355. https://doi.org/10.1021/ac60230a016

A. Oliveira-Brett, J. A. P. Piedade, L. A. Silva, V. C. Diculescu, Analytical Biochemistry 332(2) (2004) 321-329. https://doi.org/10.1016/j.ab.2004.06.021

E. Palecek, F. Scheller, J. Wang (eds.), Electrochemistry of nucleic acids and proteins: towards electrochemical sensors for genomics and proteomics, Elsevier, 2005.

H. Yin, Y. Zhou, Q. Ma, S. Ai, P. Ju, L. Zhu, L. Lu, Process Biochemistry 45(10) (2010) 1707-1712. https://doi.org/10.1016/j.procbio.2010.07.004

P S. Pruneanu, A. R. Biris, F. Pogacean, M. Coroş, G. K. Kannarpady, F. Watanabe, A. S. Biris, Electrochimica Acta 139 (2014) 386-393. https://doi.org/10.1016/j.electacta.2014.06.163

M. Arvand, M. Sanayeei, S. Hemmati, Biosensors and Bioelectronics 102 (2018) 70-79. https://doi.org/10.1016/j.bios.2017.11.002

M. Arvand, R. Mothaged Mazhabi, A. Niazi, Electrochimica Acta 89 (2013) 669-679. https://doi.org/10.1016/j.electacta.2012.11.014

B. Atiqa, A. Elharf, Moroccan Journal of Chemistry 4(1) (2016) 61-67. https://doi.org/10.48317/IMIST.PRSM/morjchem-v4i1.3696

R. Hsissou, Y. El Rhayam, A. Elharfi, International Journal of Innovation and Applied Studies 7(2) (2014) 674-682. http://www.ijias.issr-journals.org/authid.php?id=1672

Published
01-10-2021
Section
Electrochemical Science