Synthesis and antioxidant activity of six novel N-ferrocenyl-methyl-N-(nitrophenyl)- and -N-(cyanophenyl)-acetamides: Cyclic voltammetry and molecular docking studies

Original scientific paper

  • Abdellatif Kedadra VTRS Laboratory, Department of Chemistry, Faculty of Sciences, University of El Oued B.P.789, 39000, El Oued, Algeria https://orcid.org/0000-0001-9549-0038
  • Touhami Lanez VTRS Laboratory, Department of Chemistry, Faculty of Sciences, University of El Oued B.P.789, 39000, El Oued, Algeria https://orcid.org/0000-0002-3978-7635
  • Elhafnaoui Lanez VTRS Laboratory, Department of Chemistry, Faculty of Sciences, University of El Oued B.P.789, 39000, El Oued, Algeria
  • Hadia Hemmami VTRS Laboratory, Department of Chemistry, Faculty of Sciences, University of El Oued B.P.789, 39000, El Oued, Algeria https://orcid.org/0000-0002-3978-7635
  • Meriem Henni VTRS Laboratory, Department of Chemistry, Faculty of Sciences, University of El Oued B.P.789, 39000, El Oued, Algeria https://orcid.org/0000-0003-2914-465X
Keywords: Ferrocene derivatives, superoxide anion radical, binding free energy, toxicity study
Graphical Abstract

Abstract

Cyclic voltammetry (CV) assays were performed to measure superoxide anion radical (O2-) scavenging activities of six novel N-ferrocenylmethyl-N-(nitrophenyl)-acetamides and N-fer­rocenylmethyl-N-(cyanophenyl)acetamides (FMA1-FMA6), followed by molecular docking simulations and in silico toxicity prediction. The obtained values of IC50 from CV assays indicated that all studied compounds showed promising scavenging activity against O2- radicals, with the compounds FMA1, FMA3, and FMA4 possessing the most significant potency. A molecular docking study revealed that all compounds interact with amino acid residues of glutathione reductase via hydrogen bonding and hydrophobic interactions. The compound FMA4 was the most inactive compound against the glutathione reductase enzyme having the highest inhibitory concentration of 2.61 µM and the lowest docking score of -31.85 kJ/mol. Toxicity studies demonstrated that among six studied compounds, FMA4, FMA5, and FMA6 are predicted to be nontoxic.

Downloads

Download data is not yet available.

References

X. Nie, Y. Xie, Q. Wang, H. Wei, C. Xie, Y. Li, B. Wang, Y. Li, CyTA-Journal of Food 19 (2021) 560-570. https://doi.org/10.1080/19476337.2021.1925746

H. Chen, M. Chen, X. Wang, R. Sun, Polymer Chemistry 5 (2014) 4251-4258. https://doi.org-/10.1039/C4PY00120F

Q. Zhou, M. Lei, Y. Wu, S. Li, Y. Tong, Z. Li, M. Liu, L. Guo, C. Chen, Chemosphere 279 (2021) 130584. https://doi.org/10.1016/j.chemosphere.2021.130584

H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, Food Chemistry 286 (2019) 191-196. https://doi.org/10.1016/j.foodchem.2019.01.143

X. Ma, M. Chao, Z. Wang, Food Chemistry 138 (2013) 739-744. https://doi.org/10.1016/-j.food¬chem.¬2012.11.004

E. Ertaş, H. Özer, C. Alasalvar, Food Chemistry 105 (2007) 756-760. https://doi.org/10.1016/-j.foodchem.2007.01.010

M.I. López, I. Ruisánchez, M.P. Callao, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 111 (2013) 237-241. https://doi.org/10.1016/j.saa.2013.04.031

S. Anmei, Z. Qingmei, C. Yuye, W. Yilin, Analytica Chimica Acta 1023 (2018) 115-120. https://doi.org/10.1016/j.aca.2018.03.024

D. Han, M. Yu, D. Knopp, R. Niessner, M. Wu, A. Deng, Journal of Agricultural and Food Chemistry 55 (2007) 6424-6430. https://doi.org/10.1021/jf071005j

E. Mejia, Y. Ding, M.F. Mora, C.D. Garcia, Food Chemistry 102 (2007) 1027-1033. https://doi.org/10.1016/j.foodchem.2006.06.038

X. Li, X. Sun, M. Li, ChemistrySelect 5 (2020) 12777-12784. https://doi.org/10.1002/slct.-202003559

M. Heydari, S.M. Ghoreishi, A. Khoobi, Measurement 142 (2019) 105-112. https://doi.org/-10.1016/j.measurement.2019.04.058

R. N. Adams, Analytical Chemistry 30 (1958) 1576–1579.

B. J. Sanghavi, A. K. Srivastava, Electrochimica Acta 55 (2010) 8638–8648. https://doi.org/-10.1016/j.electacta.2010.07.093

I. G. Svegl, B. Ogorevc, Journal of Analytical Chemistry 367 (2000) 701–706. https://doi.org/-10.1007/s002160000465

G. Jeevanandham, K. Vediappan, Z. A. Alothman, T. Altalhi, A. K. Sundramoorthy, Scientific Reports 11 (2021) 13266. https://doi.org/10.1038/s41598-021-92620-2

M. R. Ganjali, F. Garkani-Nejad, S. Tajik, H. Beitollahi, E. Pourbasheer, B. Larijanii, International Journal of Electrochemical Science 12 (2017) 9972-9982. https://doi.org-/10.20964/2017.11.49

Y. Yao, X. Han, X. Yang, J. Zhao, C. Chai, Chinese Journal of Chemistry 39 (2021) 330-336. https://doi.org/10.1002/cjoc.202000398

J. K. Patra, K. H. Baek, Journal of Photochemistry and Photobiology B: Biology 173 (2017) 291–300. https://doi.org/10.1016/j.jphotobiol.2017.05.045

Y. Xie, T. Zhang, Y. Chen, Y. Wang, L. Wang, Talanta 2020, 213 (2020) 120843. https://doi.org/10.1016/j.talanta.2020.120843

B. Sriram, M. Govindasamy, S. F. Wang, R. J. Ramalingam, H. Al-Lohedan, T. Maiyalagan, Ultrasonics Sonochemistry 58 (2019) 104618. https://doi.org/10.1016/j.ultsonch.2019.¬104618

H. Li, B. Kou, Y. Yuan, Y. Chai, R. Yuan, Biosensors and Bioelectronics 197 (2022) 113758. https://doi.org/10.1016/j.bios.2021.113758

K.S. Park, Z. Ni, A.P. Côté, Proceedings of the National Academy of Sciences 103 (2006) 10186-10191. https://doi.org/10.1073/pnas.0602439103

S.R. Venna, M.A. Carreon, Journal of the American Chemical Society 132 (2009) 76-78. https://doi.org/10.1021/ja909263x

C. Chizallet, S. Lazare, D. Bazer-Bachi, F. Bonnier, V. Lecocq, E. Soyer, A. A. Quoineaud, N. Bats, Journal of the American Chemical Society 132 (2010) 12365-12377. https://doi.org/-10.1021/ja907359t

H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J. Caro, Journal of the American Chemical Society 131 (2009) 16000-16001. https://doi.org/10.1021/ja907359t

S. L. Li, Q. Xu, Energy & Environmental Science 6 (2013) 1656-1683. https://doi.org/-10.1039/C3EE40507A

M. C. Buzzeo, R. G. Evans, R. G. Compton, ChemPhysChem 5 (2004) 1106-1120. https://doi.org/¬10.1002/cphc.200301017

A. Abo-Hamad, M. A. Alsaadi, M. Hayyan, I. Juneidi, M. A. Hashim, Electrochimica Acta 193 (2016) 321-343. https://doi.org/10.1016/j.electacta.2016.02.044

M. Shahsavari, S. Tajik, I. Sheikhshoaie, H. Beitollahi, Topics in Catalysis (2021). https://doi.org/10.1007/s11244-021-01471-8

A. J. Bard, L. R. Faulkner, Electrochemical Methods; Fundamentals and Applications, 2nd Edition, Wiley, 2001, pp. 580-632. ISBN 978-0-471-04372-0

E. Prabakaran, K. Pandian, Food Chemistry 166 (2015) 198-205. https://doi.org/10.1016/j.-foodchem.¬2014.05.143

Q. Ye, X. Chen, J. Yang, D. Wu, J. Ma, Y. Kong, Food Chemistry 287 (2019) 375-381. https://doi.org/10.1016/j.foodchem.2019.02.108

Z. Mo, Y. Zhang, F. Zhao, F. Xiao, G. Guo, B. Zeng, Food Chemistry 121 (2010) 233-237. https://doi.org/10.1016/j.foodchem.2009.11.077

V. Vinothkumar, A. Sangili, S. M. Chen, T. W. Chen, M. Abinaya, V. Sethupathi, International Journal of Electrochemical Science 15 (2020) 2414-2429. https://doi.org/10.20964/2020.03.-08

Published
25-01-2022
Section
Electrochemical Science