Electrochemical modulation of annealed steel via cupric sulfate, potassium chloride and trisodium citrate: insights into redox behaviour and corrosion resistance

Original scientific paper

Authors

  • Francisco Augusto Nuñez Perez Maestría en Ciencias en Ingeniería, Universidad Politécnica de Lázaro Cárdenas, Michoacán C.P. 60998, Mexico https://orcid.org/0000-0003-2144-4308

DOI:

https://doi.org/10.5599/jese.2627

Keywords:

Electrolysis, morphology, crystal orientation, scanning electron microscopy, -ray diffraction

Abstract

This study probes the electrochemical modulation of annealed steel in 0.01 M copper sulfate (CuSO₄) solutions with potassium chloride (KCl) and trisodium citrate additives, using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. A three-electrode system, annealed steel wire, Ag/AgCl reference and Pt counter electrode, evaluated pure CuSO₄, CuSO₄ with 0.01 M KCl and CuSO₄ with 0.01 M trisodium citrate. KCl amplifies current density by 123 % and reduces charge transfer resistance by 75 % at -0.8 V vs. Ag/AgCl, enhancing copper electrodeposition kinetics. Trisodium citrate, forming Cu²⁺ complexes, curtails redox activity by 51 % and elevates polarization resistance at -0.6 V, fostering passivation. Measurements at -0.6 and -0.8 V highlight kinetic dominance of KCl and stabilizing effect of citrate ions, slashing corrosion rates from 154.87 to 8.05 mm year-1. These insights make a framework for corrosion-resistant coatings without reliance on structural imaging, with broad implications for electrochemical applications.

Downloads

Download data is not yet available.

References

[1] K. Bijapur, V. Molahalli, A. Shetty, A. Toghan, P. De Padova, G. Hegde, Recent Trends and Progress in Corrosion Inhibitors and Electrochemical Evaluation, Applied Sciences 13 (2023) 10107. https://doi.org/10.3390/app131810107

[2] Y. V. Ivshin, F. N. Shaikhutdinova, V. A. Sysoev, Electrodeposition of Copper on Mild Steel: Peculiarities of the Process, Surface Engineering and Applied Electrochemistry 54 (2018) 452-458. https://doi.org/10.3103/S1068375518050046

[3] A. Pasha, S. Khasim, A. A. A. Darwish, T. A. Hamdalla, S. A. Al-Ghamdi, High Performance Organic Coatings of Polypyrrole Embedded with Manganese Iron Oxide Nanoparticles for Corrosion Protection of Conductive Copper Surface, Journal of Inorganic and Organometallic Polymers and Materials 32 (2022) 499-512. https://doi.org/10.1007/s10904-021-02130-x

[4] U. Rocabert, F. Muench, M. Fries, B. Beckmann, K. Loewe, H. A. Vieyra, M. Katter, A. Barcza, W. Ensinger, O. Gutfleisch, Electrochemical Corrosion Study of La(Fe11.6-xSix1.4Mnx)H1.5 in Diverse Chemical Environments, Electrochimica Acta 434 (2022) 141200. https://doi.org/10.1016/j.electacta.2022.141200

[5] G. Vasyliev, V. Vorobyova, D. Uschapovskiy, O. Linyucheva, Local Electrochemical Deposition of Copper from Sulfate Solution, Journal of Electrochemical Science and Engineering 12 (2022) 557-563. https://doi.org/10.5599/jese.1352

[6] S. Parida, S. Das, A. Mallik, An Experimental Study of Copper Electroplating by Electrochemical Impedance Spectroscopy (EIS) at Room Temperature, Materials Today: Proceedings 66 (2022) 544-547. https://doi.org/10.1016/j.matpr.2022.05.596

[7] M. Elrouby, A. Gelany, H. Saber, Potentiostatic Electrodeposition of Copper, Indium, and Cadmium Sulfides for CO2 Electroreduction: A Path toward Sustainable Hydrogen Generation, International Journal of Hydrogen Energy 91 (2024) 877-892. https://doi.org/10.1016/j.ijhydene.2024.10.190

[8] P. Y. Shevelin, N. G. Molchanova, A. N. Yolshin, N. N. Batalov, Electron Transfer in an Electron-Ion Molten Mixture of CuCl-CuCl2-MeCl (Me = Li, Na, K, Cs), Electrochimica Acta 48 (2003) 1385-1394. https://doi.org/10.1016/S0013-4686(03)00005-7

[9] A. Dridi, L. Dhouibi, J. Y. Hihn, P. Berçot, W. Sassi, E. M. Rezrazi, CuZn Electrodeposition in Cyanide-Free Electrolytes: Influence of Citrate/Metal Ratio and pH on Simultaneous Copper and Zinc Reduction Kinetics and Alloy Composition Control, Journal of The Electrochemical Society 167 (2020) 062508. https://doi.org/10.1149/1945-7111/ab819b

[10] R. Ghosh, V. Sudha, S. Harinipriya, Thermodynamic Analysis of Electrodeposition of Copper from Copper Sulphate, Bulletin of Materials Science 42 (2019) 43. https://doi.org/10.1007/s12034-018-1712-1

[11] D. Grujicic, B. Pesic. Electrodeposition of Copper: The Nucleation Mechanisms. Electrochimica Acta 47 (2002) 2901-2912. https://doi.org/10.1016/S0013-4686(02)00161-5

[12] K. G. Schmitt, R. Schmidt, J. Gaida, A. A. Gewirth, Chain Length Variation to Probe the Mechanism of Accelerator Additives in Copper Electrodeposition, Physical Chemistry Chemical Physics 21 (2019) 16838-16847. https://doi.org/10.1039/C9CP00839J

[13] J. Xu, W. Ren, Z. Lian, P. Yu, H. Yu, A Review: Development of the Maskless Localized Electrochemical Deposition Technology, International Journal of Advanced Manufacturing Technology 110 (2020) 1731-1757. https://doi.org/10.1007/s00170-020-05799-5

[14] P. Ye, Q. Niu, F. Wang, Effect of Electrolyte Composition and Deposition Voltage on the Deposition Rate of Copper Microcolumns Jet Electrodeposition, Materials Science and Engineering: B 298 (2023) 116857. https://doi.org/10.1016/j.mseb.2023.116857

[15] G. Jerkiewicz, Applicability of Platinum as a Counter-Electrode Material in Electrocatalysis Research, ACS Catalysis 12 (2022) 2661-2670. https://doi.org/10.1021/acscatal.1c06040

[16] Y. Lyu, P. Mollik, A. L. Oláh, D. P. Halter, Construction and Evaluation of Cheap and Robust Miniature Ag/AgCl Reference Electrodes for Aqueous and Organic Electrolytes. ChemElectroChem 11 (2024) e202300792. https://doi.org/10.1002/celc.202300792

[17] E. Garcia, J. Torres, N. Rebolledo, R. Arrabal, J. Sanchez, Corrosion of Steel Rebars in Anoxic Environments. Part I: Electrochemical Measurements, Materials 14 (2021) 2491. https://doi.org/10.3390/ma14102491

[18] X. Yu, X. Li, G. Zheng, Y. Wei, A. Zhang, B. Yao, Preparation and Properties of KCl-Doped Cu2O Thin Film by Electrodeposition, Applied Surface Science 270 (2013) 340-345. https://doi.org/10.1016/j.apsusc.2013.01.026

[19] J. Wang, F. Xie, Y. Pan, W. Wang, Leaching of Gold with Copper-Citrate-Thiosulfate Solutions, Mineral Processing and Extractive Metallurgy Review 43 (2021) 916-925. https://doi.org/10.1080/08827508.2021.1969389

[20] J. Peng, B. Chen, Z. Wang, J. Guo, B. Wu, S. Hao, Q. Zhang, L. Gu, Q. Zhou, Z. Liu, S. Hong, S. You. A. Fu, Z. Shi, H. Xie, D. Cao, C.-J. Lin, G. Fu, L.-S. Zheng, Y. Jiang, N. Zheng, Surface Coordination Layer Passivates Oxidation of Copper, Nature 586 (2020) 390-394. https://doi.org/10.1038/s41586-020-2783-x

[21] F. Nikkhou, F. Xia, A. P. Deditius, Variable Surface Passivation During Direct Leaching of Sphalerite by Ferric Sulfate, Ferric Chloride, and Ferric Nitrate in a Citrate Medium, Hydrometallurgy 188 (2019) 201-215. https://doi.org/10.1016/j.hydromet.2019.06.017

[22] G. S. Sajadi, V. Saheb, M. Shahidi-Zandi, S. M. Ali Hosseini, A Study on Synergistic Effect of Chloride and Sulfate Ions on Copper Corrosion by Using Electrochemical Noise in Asymmetric Cells, Scientific Reports 12 (2022) 14384. https://doi.org/10.1038/s41598-022-18317-2

[23] M. Schneider, U. Langklotz, L. Kühne, U. Gierth, Investigation of Anodic Oxide Formation on AA 7075 in Citric Acid, Materials Chemistry and Physics 320 (2024) 129458. https://doi.org/10.1016/j.matchemphys.2024.129458

[24] K. R. Cooper, M. Smith, Electrical Test Methods for On-Line Fuel Cell Ohmic Resistance Measurement, Journal of Power Sources 160 (2006) 1088-1095. https://doi.org/10.1016/j.jpowsour.2006.02.086

[25] O. Gharbi, A. Dizon, M. E. Orazem, M. T. Tran, B. Tribollet, V. Vivier, From Frequency Dispersion to Ohmic Impedance: A New Insight on the High-Frequency Impedance Analysis of Electrochemical Systems, Electrochimica Acta 320 (2019) 134609. https://doi.org/10.1016/j.electacta.2019.134609

[26] A. Dutta, J. Kaur, A. Saxena, Boosting the Corrosion Inhibition Efficiency of the Clerodendrum serratum Extract for Steel in the Presence of KCl, Chemical Data Collections 52 (2024) 101148. https://doi.org/10.1016/j.cdc.2024.101148

[27] M. Chahbi, A. Mortadi, S. Zaim, N. El Ghyati, M. Monkade, R. El Moznine, A New Approach to Investigate the Ionic Conductivity of NaCl and KCl Solutions via Impedance Spectroscopy, Materials Today: Proceedings 66 (2022) 205-211. https://doi.org/10.1016/j.matpr.2022.04.489

[28] J. Roscher, D. Liu, X. Xie, R. Holze, Comparative Assessment of Aromatic Iron Corrosion Inhibitors with Electrochemical Methods, Corrosion and Materials Degradation 5 (2024) 593-600. https://doi.org/10.3390/cmd5040027

[29] F. A. Nuñez Pérez, Electrochemical Analysis of Corrosion Resistance of Manganese-Coated Annealed Steel: Chronoamperometric and Voltammetric Study, AppliedChem 4 (2024) 367-383. https://doi.org/10.3390/appliedchem4040023

[30] M. G. R. Mahlobo, P. A. Olubambi, P. Mjwana, M. Jeannin, P. Refait, Study of Overprotective-Polarization of Steel Subjected to Cathodic Protection in nsaturated Soil, Materials 14 (2021) 4123. https://doi.org/10.3390/ma14154123

Published

29-04-2025

Issue

Section

Corrosion

How to Cite

Electrochemical modulation of annealed steel via cupric sulfate, potassium chloride and trisodium citrate: insights into redox behaviour and corrosion resistance: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(3), 2627. https://doi.org/10.5599/jese.2627

Similar Articles

1-10 of 221

You may also start an advanced similarity search for this article.