Ecofriendly synthesis of NiZnFe2O5 nanoparticle by papaya leaf extract for electrochemical detection of ascorbic acid in orange juice and pharmaceuticals
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2479Keywords:
Green synthesis, glassy carbon electrode, cyclic voltammetry, differential pulse voltammetry, vitamin-C tablets
Abstract
A green technique has been employed to synthesize the NiZnFe2O5 nanoparticles using papaya leaf extract. The X-ray diffraction investigated the structural characteristics and crystalline size. The morphology of the synthesised nanoparticle is analysed by scanning electron microscopy. The average diameter of the nanoparticle is 47.93 nm, which was determined using the dynamic light scattering method. UV/Vis diffuse reflectance spectrum results revealed that the NiZnFe2O5 NPs band gap is 1.8 eV. It was calculated using the Kubelka-Monk function and energy dispersion X-ray spectroscopy analysis was used to identify the synthesized nanoparticle's elements. The electrochemical behaviour of NiZnFe2O5 modified glassy carbon electrode (GCE) nd bare GCE was studied to detect ascorbic acid using cyclic voltammetry and differential pulse voltammetry. Compared to unmodified GCE, NiZnFe2O5 nanoparticles modified GCE exhibit excellent electrocatalytic activity towards the AA oxidation, which was proved by the increase in peak current and decrease in peak potential. Electrochemical impedance analysis suggests that the NiZnFe2O5 nanoparticles significantly enhance the charge transfer rate. The linear response of the peak current on the concentration of AA was obtained in the range of 0.2-50 µM. The detection limit was found to be 1.038 µM. The present work serves as a systematic benchmark to assess the electrochemical sensing potential of NiZnFe2O5 NPs towards AA in orange juice and pharmaceuticals.
Downloads
References
P. G. Jamkhande, N. W. Ghule, A. H. Bamer, M. G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, Journal of Drug Delivery Science and Technology 53 (2019) 101174. https://doi.org/10.1016/j.jddst.2019.101174.
S. A. Farhan, R. Dadoosh, A. jassim, Evaluation of Phytochemical, Total phenolic and Antioxidant Activity of Carica Papaya Seed for Its Use in Biosynthesis of Gold Nanoparticles, Egyptian Journal of Chemistry 64 (2021) 4301-4310. https://doi.org/10.21608/ejchem.2021.63985.3371.
G. Kesavan, N. Nataraj, S.-M. Chen, L.-H. Lin, Hydrothermal synthesis of NiFe 2 O 4 nanoparticles as an efficient electrocatalyst for the electrochemical detection of bisphenol A, New Journal of Chemistry 44 (2020) 7698-7707. https://doi.org/10.1039/D0NJ00608D.
S. Z. Bas, N. Yuncu, K. Atacan, M. Ozmen, A comparison study of MFe2O4 (M: Ni, Cu, Zn)-reduced graphene oxide nanocomposite for electrochemical detection of bisphenol A, Electrochimica Acta 386 (2021) 138519 https://doi.org/10.1016/j.electacta.2021.138519.
M. Derakhshi, T. Jamali, M. Elyasi, M. Bijad, R. Sadeghi, A. Kamali, K. Niazazari, M. R. Shahmiri, A. Bahari, S. Mokhtari, Synthesis and Characterization of NiO Nanoparticle as a High Sensitive Voltammetric Sensor for Vitamin C Determination in Food Samples, Journal of the Serbian Chemical Society 8 (2013) 8252-8263. https://doi.org/10.1016/S1452-3981(23)12884-7.
T. Peik-See, A. Pandikumar, H. Nay-Ming, L. Hong-Ngee, Y. Sulaiman, Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode, Sensors 14 (2014) 15227-15243 https://doi.org/10.3390/s140815227.
M. Dosedel, E. Jirkovsky, K. Macakova, L. Krcmova, L. Javorska, J. Pourova, L. Mercolini, F. Remiao, L. Novakova, P. Mladenka, Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination, Nutrients 13 (2021) 615. https://doi.org/10.3390/nu13020615.
S. Jeevitha, H. S. Nagendra Prasad, M. B. Shivaswamy, M. S. Asha, S. R. Arjun, G. N. Chandana, M. A. Sangamesha, B. S. Madhukar, B. S. Hemanth, Sabu Thomas, Facile green preparation of ZnFe2O4 nanoparticles using papaya leaf extract for electrochemical detection of acetaminophen in Zerodol P and Dolo drops, Ionics 30 (2024) 1-14. https://doi.org/10.1007/s11581-024-05879-6.
P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol-gel auto-combustion method, Materials Research Bulletin 46 (2011) 2204-2207. https://doi.org/10.1016/j.materresbull.2011.09.010.
H. M. Zaid, M. Adil, K. C. Lee, Structural and morphological evolution of metal oxide nanoparticles synthesised via sol-gel auto-combustion, International Journal of Nanotechnology 14 (2017) 284. https://doi.org/10.1504/IJNT.2017.082478.
H. R. Ebrahimi, M. Parish, G. R. Amiri, B. Bahraminejad, S. Fatahian, Synthesis, characterization and gas sensitivity investigation of Ni0.5Zn0.5Fe2O4 nanoparticles, Journal of Magnetism and Magnetic Materials 414 (2016) 55-58. https://doi.org/10.1016/j.jmmm.2016.04.043.
S. Alaei, M. Haghighi, J. Toghiani, B. Rahmani Vahid, Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance, Industrial Crops and Products 117 (2018) 322.332. https://doi.org/10.1016/j.indcrop.2018.03.015.
S. Landi, I. R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, C. J. Tavares, Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements, Solid State Communications 341 (2022) 114573. https://doi.org/10.1016/j.ssc.2021.114573.
B. S. Hemanth, M. J. Deviprasad, M. B. Shivaswamy, H. S. Nagendra Prasad, S. Sumathi, R. Aswathy, M. A. Sangamesha, A. P. Ananda, H. S. Jayanth, T. N. Lohith, Synthesis of citral-tryptamine fused selenium nanospheres (CT@SeNP’s) and exploration of their anticancer, antibacterial, and electrochemical sensor applications, Journal of Molecular Structure 1310 (2024) 138240. https://doi.org/10.1016/j.molstruc.2024.138240.
M. P. Ujwal, S. R. Yashas, H. P. Shivaraju, N. Kumara Swamy, Gadolinium ortho-ferrite interfaced polyaniline: Bi-functional catalyst for electrochemical detection and photocatalytic degradation of acetaminophen, Surfaces and Interfaces 30 (2022) 101878. https://doi.org/10.1016/j.surfin.2022.101878.
M. K. Manju, J.G. Manjunatha, K. Bhimaraya, S. A. Aldossari, S. Mohammad, M. Sillanpää, Simultaneous electrochemical detection of hydroquinone and catechol using a carbon nanotube paste electrode modified with electrochemically polymerized L-alanine, Chemical Papers 78 (2024) 8019-8030. https://doi.org/10.1007/s11696-024-03652-7.
A. A.Rashak, F. F. Karam, Preparation of graphene oxide and multi-walled carbon nanotubes, and they are used to modify the glassy carbon electrode for sensing Enalapril Maleate, Results in Chemistry 8 (2024) 101597. doi.org/10.1016/j.rechem.2024.101597.
R. Santhosh Kumar, K. Govindan, S. Ramakrishnan, A. R. Kim, J.-S. Kim, D. J. Yoo, Fe3O4 nanorods decorated on polypyrrole/reduced graphene oxide for electrochemical detection of dopamine and photocatalytic degradation of acetaminophen, Applied Surface Science 556 (2021) 149765. https://doi.org/10.1016/j.apsusc.2021.149765.
M. B. Shivaswamy, P. Karthikdev, B. S. Madhukar, B. S. Hemanth, M. J. Deviprasad, R. Kavya, M. A. Sangamesha, A. P. Anand, H. P. Spoorthy, H. S. Nagendra Prasad, Silver fused multifunctional CeIn2O5 nanoparticle: Photocatalytic, antibacterial and electrochemical sensor studies, Chemistry of Inorganic Materials 2 (2024) 100042. https://doi.org/10.1016/j.cinorg.2024.100042.
S. Kubendhiran, R. Sakthivel, S.-M. Chen, R. Anbazhagan, H.-C. Tsai, A novel design and synthesis of ruthenium sulfide decorated activated graphite nanocomposite for the electrochemical determination of antipsychotic drug chlorpromazine, Composites Part B: Engineering 168 (2019) 282-290. https://doi.org/10.1016/j.compositesb.2018.12.082.
B. Habibi, M. H. Pournaghi-Azar, Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry, Electrochimica Acta 55 (2010) 5492-5498. https://doi.org/10.1016/j.electacta.2010.04.052.
M. Saleh Mohammadnia, E. Marzi Khosrowshahi, E. Naghian, A. Homayoun Keihan, E. Sohouli, M. E. Plonska-Brzezinska, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, Application of carbon nanoonion-NiMoO4-MnWO4 nanocomposite for modification of glassy carbon electrode: Electrochemical determination of ascorbic acid, Microchemical Journal 159 (2020) 105470. https://doi.org/10.1016/j.microc.2020.105470.
Y. J. Yang, One-pot synthesis of reduced graphene oxide/zinc sulfide nanocomposite at room temperature for simultaneous determination of ascorbic acid, dopamine and uric acid, Sensors and Actuators B 221 (2015) 750-759. https://doi.org/10.1016/j.snb.2015.06.150.
L. Zhang, G. Wang, D. Wu, C. Xiong, L. Zheng, Y. Ding, H. Lu, G. Zhang, L. Qiu, Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid, Biosensors and Bioelectronics 100 (2018) 235-241. https://doi.org/10.1016/j.bios.2017.09.006.
J. K. Jadav, V. V. Umrania, K. J. Rathod, B. A. Golakiya, Development of silver/carbon screen-printed electrode for rapid determination of vitamin C from fruit juices, LWT - Food Science and Technology 88 (2018) 152-158. https://doi.org/10.1016/j.lwt.2017.10.005.
M. S. Raghu, L. Parashuram, K. Y. Kumar, B. P. Prasanna, S. Rao, P. Krishnaiah, K. N. Prashanth, C. B. P. Kumar, H. Alrobei, Facile green synthesis of boroncarbonitride using orange peel; Its application in high-performance supercapacitors and detection of levodopa in real samples, Materials Today Communications 24 (2020) 101033. https://doi.org/10.1016/j.mtcomm.2020.101033.
P. Shakkthivel, S.-M. Chen, Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode, Biosensors and Bioelectronics 22 (2007) 1680-1687. https://doi.org/10.1016/j.bios.2006.07.026.
A. Murali, Y. P. Lan, P. K. Sarswat, M. L. Free, Synthesis of CeO2/reduced graphene oxide nanocomposite for electrochemical determination of ascorbic acid and dopamine and for photocatalytic applications, Materials Today Chemistry 12 (2019) 222-232. https://doi.org/10.1016/j.mtchem.2019.02.001.
B. Kaur, T. Pandiyan, B. Satpati, R. Srivastava, Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode, Colloids and Surfaces B: Biointerfaces 111 (2013) 97-106. https://doi.org/10.1016/j.colsurfb.2013.05.023.
V. Vinothkumar, R. Sakthivel, S.-M. Chen, T. H. Kim, M. Abinaya, S. Kubendhiran, G. Gopu, Nanoarchitectured nickel phosphate integrated with graphene oxide for the toxicant diphenylamine detection in food samples, Journal of Food Composition and Analysis 111 (2022) 104628. https://doi.org/10.1016/j.jfca.2022.104628.
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.