Electrochemical analysis of indigo carmine using polyarginine modified carbon paste electrode

  • D'Souza S. Edwin Department of chemistry, FMKMC College, Madikeri, Constituent College of Mangalore University, Karnataka, India
  • Jamballi G. Manjunatha Department of Chemistry, FMKMC College, Madikeri, Mangalore University Constituent College, Karnataka, India https://orcid.org/0000-0002-0393-2474
  • Chenthattil Raril Department of chemistry, FMKMC College, Madikeri, Constituent College of Mangalore University, Karnataka, India
  • Tigari Girish Department of chemistry, FMKMC College, Madikeri, Constituent College of Mangalore University, Karnataka, India
  • Doddarasinakere K. Ravishankar Department of Chemistry, FMKMC College, Madikeri, Constituent College of Mangalore University, Karnataka, India
  • Huligerepura J. Arpitha Department of Physics, Sri Adichunchanagiri First Grade College, Channarayapatna, India
Keywords: carbon paste, electropolymerization, food dye, real samples, cyclic voltammetry, differential pulse voltammetry
Graphical Abstract


Suitable electrocatalytic method is established for the selective determination of indigo carmine (IC) at polyarginine modified carbon paste electrode (PAMCPE). Surface morphological study of bare carbon paste electrode (CPE) and PAMPCE is done by field emission scanning electron microscopy (FESEM). The influence of different parameters such as IC concentration, solution pH and potential scan rate on the electrode responses is stu­di­ed using cyclic and differential pulse voltammetry techniques. The prepared PAMCPE shows better electrochemical response towards IC than CPE. No interference is noticed at simul­taneous presence of IC and riboflavin (RF) in the solution. The electrocatalytic current of IC at PAMPCE is varied linearly with its concentration in two separate ranges, from 2×10-7 to 10-6 M, and 1.5×10-6 to 3.5×10-6 M. Limits of detection (LOD) and quantification (LOQ) are determined as 2.53×10-8 and 8.43×10-8 M, respectively. The developed PAMCPE is showing successful reproducibility and stability. It is also found sensitive and reliable for trace amounts of IC in some real water and food samples. Since preparation of PAMCPE sensor is simple and easy, it could become a part of the standard method for determination of IC in real samples.


Download data is not yet available.


T. Robinson, G. McMullan, R. Merchant, P. Nigam, Bioresource Technology 77(3) (2001) 247-255 https://doi.org/10.1016/s0960-8524(0,0)00080-8.

J. Hastie, D. Bejan, M. Teutli-León, N. J. Bunce, Industrial & Engineering Chemistry Research 45 (2006) 4898-4904 https://doi.org/10.1021/ie060310b.

J. J. Berzas-Nevado, J. Rodríguez Flores, M. J. Villaseñor Llerena, N. Rodríguez Fariñas, Talanta 48(4) (1999) 895-903 https://doi.org/10.1016/S0039-9140(98)00301-4.

E. Gutiérrez Segura, M. Solache-Ríos, A. Colín Cruz, Journal of Hazardous Materials 170(2-3) (2009) 1227-1235 https://doi.org/10.1016/j.jhazmat.2009.05.102.

U. R. Lakshmi, V. C. Srivastava, I. D. Mall, D. H. Lataye, Journal of Environmental Management 90(2) (2009) 710-720 https://doi.org/10.1016/j.jenvman.2008.01.002.

K. S. Rowe, K. J. Rowe, The Journal of Pediatrics 125 (1994) 691-698 https://doi.org/10.1016/s0022-3476(94)70059-1.

E. H. Rodd, Chemistry of carbon compounds, 4th edition, Elsevier, Amsterdam 1960 https://doi.org/10.1002/ange.19600721522.

L. Ge, K. Moor, B. Zhang, Y. He, J. H.-Kim, Nanoscale 6 (2014) 13579-13585 https://doi.org/10.1039/c4nr03647f.

S. Alahiane, S. Qourzal, M. El Ouardi, M. Belmouden, A. Assabbane, Y. Ait-Ichou, Journal of Materials and Environmental Science 4(2) (2013) 239-250.

C. F. Tsai, C. H. Kuo, D. Y.C. Shih, Journal of Food and Drug Analysis 23 (2015) 453-462 https://doi.org/10.1016/j.jfda.2014.09.003.

M. A. Rauf, S. S. Ashraf, Chemical Engineering Journal 151(1-3) (2009) 10-18 https://doi.org/10.1016/j.cej.2009.02.026.

C. L. Jenkins, Journal of Environmental Health 40(5) (1978) 256-263.

R. S. N′ Dri, M. Coulibaly, A. N’ G. Yao, D. Bamba, E. G. Zoro, International Journal of Electrochemical Science 11 (2016) 5342-5350 https://doi.org/10.20964/2016.06.61.

M. Díaz-González, C. Fernández-Sánchez, A. Costa-García, Analytical Sciences 18(11) (2002) 1209-1213 https://doi.org/10.2116/analsci.18.1209.

Y. Ni, X. Gong, Analytica Chimica Acta 354(1-3) (1997) 163-171 https://doi.org/10.1016/S0003-2670(97)00297-3.

E. S. D’ Souza, J. G. Manjunatha, C. Raril, T. Girish, D. K. Ravishankar, S. Fattepur, Journal of Materials and Environmental Science 11(3) (2020) 512-521. https://www.jmaterenvironsci.com/Document/vol11/vol11_N3/JMES-2020-1145-DSouza.pdf

A. H. Alghamdi, Journal of AOAC International 88(5) (2005) 1387-1393 https://doi.org/10.1093/jaoac/88.5.1387.

S. Suzuki, M. Shirao, M. Aizawa, H. Nakazawa, K. Sasa, H. Sasagawa, Journal of Chromatography A 680(2) (1994) 541-547 https://doi.org/10.1016/0021-9673(94)85153-0.

G. M. Greenway, N. Kometa, R. Macrae, Food Chemistry 43(2) (1992) 137-140 https://doi.org/10.1016/0308-8146(92)90227-S.

C.-L. Sun, C.-H. Su, J.-J. Wu, Biosensors and Bioelectronics 67 (2015) 327-333 https://doi.org/10.1016/j.bios.2014.08.046.

I. O. Gyan, I. F. Cheng, Microchemical Journal 122 (2015) 39-44 https://doi.org/10.1016/j.microc.2015.04.002.

D. N. Oko, S. Garbarino, J. Zhang, Z. Xu, M. Chaker, D. Ma, D. Guay, A. C. Tavares, Electrochimica Acta 159 (2015) 174-183 https://doi.org/10.1016/j.electacta.2015.01.192.

D. M. Fernandez, M. Costa, C. Pereira, B. Bachiller-Baeza, I. Rodrígues-Ramos, A. Guerrero-Ruiz, C. Freire, Journal of Colloid and Interface Science 432 (2014) 207-213 https://doi.org/10.1016/j.jcis.2014.06.050.

H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Analytical Chemistry 80 (2008) 9848-9851 https://doi.org/10.1021/ac801854j.

S. Tajik, M. A. Taher, H. Beitollahi, Sensors and Actuators B Chemical 197 (2014) 228-236 https://doi.org/10.1016/j.snb.2014.02.096.

C. Raril, J. G. Manjunatha, Journal of Materials and Environmental Science 10(6) (2019) 510-519 http://www.jmaterenvironsci.com/Document/vol10/vol10_N6/53-JMES-Raril-2019.pdf.

C. Raril, J.G. Manjunatha, L. Nanjundaswamy, G. Siddaraju, D.K. Ravishankar, S. Fattepur, E. Niranjan, Analytical and Bioanalytical Electrochemistry 10(11) (2018) 1479-1490 https://www.sid.ir/FileServer/JE/55002820181108.pdf.

S. Tajik, H. Beitollahi, F. G. Nejad, M. Safaei, K. Zhang, Q. Van Le, R. S. Varma, H. W. Jang, M. Shokouhimehr, RSC Advances 10 (2020) 21561-21581 https://doi.org/10.1039/d0ra03672b.

G. Tigari, J. G. Manjunatha, D. K. Ravishankar, G. Siddaraju, Methods and Objects of Chemical Analysis 14(4) (2019) 216-223 https://doi.org/10.17721/moca.2019.216-223.

I. Švancara, K. Vytřas, J. Barek, J. Zima, Critical Reviews in Analytical Chemistry 31(4) (2001) 311-345 https://doi.org/10.1080/20014091076785.

J. G. Manjunatha, M. Deraman, N. H. Basri, Asian Journal of Pharmaceutical and Clinical Research 8(5) (2015) 40-45.

Q. Li, J. Yang, X. Tan, Z. Zhang, X. Hu, M. Yang, Luminescence 31 (2016) 1152-1157 https://doi.org/10.1002/bio.3085.

J. J. Berzas, F. J. Rodríguez Flores, M. J. Villaseñor Llerena, N. Rodríguez Fariñas, Analytica Chimica Acta 391(3) (1999) 353–364 https://doi.org/10.1016/S0003-2670(99)00215-9.

J. G. Manjunatha, Journal of Food and Drug Analysis 26 (2018) 292-299 https://doi.org/10.1016/j.jfda.2017.05.002.

P. A. Pushpanjali, J. G. Manjunatha, C. Raril, D. K. Ravishankar, Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences 5 (2019) 820-832 https://doi.org/10.26479/2019.0501.68.

N. Hareesha, J. G. Manjunatha, B. M. Amrutha, M. M. Charithra, N. Prinith Subbaiah, Journal of Electronic Materials 50(3) (2021) 1230-1238 https://doi.org/10.1007/s11664-020-08616-7.

Electrochemical Science