Development of ciprofloxacin sensor using iron-doped graphitic carbon nitride as transducer matrix: Analysis of ciprofloxacin in blood samples
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1112Keywords:
quinolone, drug sensor, electrochemical sensor, electrode matrix, differential pulse voltammetry
Abstract
In the present work, we have synthesized an iron-decorated graphitic carbon nitride (Fe@g-C3N4) composite and employed it for electrochemical sensing of ciprofloxacin (CFX). The physicochemical characteristics of the Fe@g-C3N4 composite were analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray diffraction (EDX) spectroscopy methods. Further, the pencil graphite electrode (PGE) was modified with Fe@g-C3N4 composite to get PGE/Fe@g-C3N4 electrode and characterized the resultant electrode by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was employed to determine the effect of concentration and interferents. The modified PGE/Fe@g-C3N4 electrode demonstrated the exceptional electrochemical performance for CFX identification and quantification with a LOD of 5.4 nM, a wide linear range of 0.001-1.0 µM, and high sensitivity of 0.0018 µA mM-1 cm-2. Besides, Fe@g-C3N4 modified PGE showed remarkable recovery results in qualitative analysis of CFX in human blood specimens. This research advocates that the Fe@g-C3N4 composite acts as an excellent transducer material in the electrochemical sensing of CFX in blood and standard samples. Further, the proposed strategy deduces that the PGE/Fe@g-C3N4 sensor can be a prospective candidate for the dynamic determination of CFX in blood serum and possibly ratified as an exceptional drug sensor for therapeutic purposes.
Downloads
References
J. S. Solomkin, H. H. Reinhart, E. P. Dellinger, J. M. Bohnen, O. D. Rotstein, S. B. Vogel, H. H. Simms, C. S. Hill, H. S. Bjornson, D. C. Haverstock, H. O. Coulter, R. M. Echols, Annals of Surgery 223 (1996) 303–315. https://doi.org/10.1097/00000658-199603000-00012
A. R. Abadia, J. J. Aramayona, M. J. Muńoz, J. M. P. Delfina, M. A. Bregante, Journal of Veterinary Medicine 42 (1995) 505–511. https://doi.org/10.1111/j.1439-0442.1995.tb00405.x
R. Davis, A. Markham, J. A. Balfour, Drugs 51 (1996) 1019–1074. https://doi.org/10.2165/00003495-199651060-00010
H. H. H. Mohammed, G. E.-D. A. A. Abuo-Rahma, S. H. Abbas, E. S. M. N. Abdelhafez, Current Medicinal Chemistry 26 (2018) 3132–3149. https://doi.org/10.2174/0929867325666180214122944
B. Huang, Y. Yin, L. Lu, H. Ding, L. Wang, T. Yu, J. J. Zhu, X. D. Zheng, Y. Z. Zhang, Journal of Zheijang University Science B 11 (2010) 812–818. https://doi.org/10.1007/s10967-010-0571-z
M. Tumini, O. Nagel, M. P. Molina, R. Althaus, International Dairy Journal 64 (2017) 9–13. https://doi.org/10.1016/j.idairyj.2016.08.008
J. B. Xiao, C. S. Yang, F. L. Ren, X. Y. Jiang, M. Xu, Measurement Science and Technology 18 (2007) 859–866. https://doi.org/10.1088/0957-0233/18/3/039
H. Karimi-Maleh, F. Karimi, L. Fu, A. L. Sanati, M. Alizadeh, C. Karaman, Y. Orooji, Journal of Hazardous Materials 423 (2022) 127058. https://doi.org/10.1016/j.jhazmat.2021.127058
H. Karimi-Maleh, Y. Orooji, F. Karimi, M. Alizadeh, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S Agarwal, V. K. Gupta S. Rajendran, Biosensors and Bioelectronics 184 (2021) 113252. https://doi.org/10.1016/j.bios.2021.113252
H. Karimi-Maleh, M. L. Yola, N. Atar, Y. Orooji, F. Karimi, P. S. Kumar, J. Rouhi, M. Baghayeri, Journal of Colloid and Interface Science 592 (2021) 174-185. https://doi.org/10.1016/j.jcis.2021.02.066
C. Karaman, O. Karaman, B. B. Yola, I. Ulker, N. Atar, M. L. Yola, New Journal of Chemistry 45 (2021) 11222-11233. https://doi.org/10.1039/D1NJ02293H
C. Karaman, O. Karaman, N. Atar, M. L. Yola, Microchimica Acta 188 (2021) 182. https://doi.org/10.1007/s00604-021-04838-6
R. N. Goyal, V. K. Gupta, S. Chatterjee, Electrochimica Acta 53 (2008) 5354–5360. https://doi.org/10.1016/j.electacta.2008.02.059
R. N. Goyal, V. K. Gupta, N. Bachheti, Analytica Chimica Acta 597 (2007) 82–89. https://doi.org/10.1016/j.aca.2007.06.017
H. Bagheri, A. Shirzadmehr, M. Rezaei, Journal of Molecular Liquids 212 (2015) 96–102. https://doi.org/10.1016/j.molliq.2015.09.005
H. Bagheri, A. Afkhami, Y. Panahi, H. Khoshsafar, A. Shirzadmehr, Materials Science and Engineering C 37 (2014) 264–270. https://doi.org/10.1016/j.msec.2014.01.023
N. Ozcan, C. Karaman, N. Atar, O. Karaman, M. L. Yola, Journal of Solid State Science and Technology 9(12) (2020) 121010. https://doi.org/10.1149/2162-8777/abd149
C. P. Boke, O. Karaman, H. Medetalibeyoglu, C. Karaman, N. Atar, M. L. Yola, Microchemical Journal 157 (2020) 105012. https://doi.org/10.1016/j.microc.2020.105012
M. Baghayeri, H. Veisi, H. Veisi, B. Maleki, H. Karimi-Maleh, H. Beitollahi, RSC Advances 4(91) (2014) 49595-49604. https://doi.org/10.1039/C4RA08536A
M. A. Khalilzadeh, H. Karimi-Maleh, A. Amiri, F. Gholami, Chinese Chemical Letters 21(12) (2010) 1467-1470. https://doi.org/10.1016/j.cclet.2010.06.020
A. A. Ensafi, E. Khoddami, B. Rezaei, H. Karimi-maleh, Colloids and Surfaces B 81(1) (2010) 42-49. https://oi.org/10.1016/j.colsurfb.2010.06.020
H. Medetalibeyoğlu, M. Beytur, S. Manap, C. Karaman, F. Kardaş, O. Akyıldırım, M. L. Yola, ECS Journal of Solid State Science and Technology 9(10) (2020) 101006. https://doi.org/10.1149/2162-8777/abbe6a
C. Somaye, A. Mohammad H. Taher, H. Karimi-Maleh, K. Fatmeh, S. N. Mehdi, A. Marzieh, A.O. Amani, E. Nevin, K. Praveen, R. Yegya, K. Ceren, Chemosphere 287(2) (2022) 132187. https://doi.org/10.1016/j.chemosphere.2021. 132187
A. A. ENSAFI, D. T. Samira, K. M. Hassan, Analytical Sciences 27(4) (2011) 409. https://doi.org/10.2116/analsci.7.409
J. A. Cruz-Navarro, F. Hernandez-Garcia, G. A. Alvarez Romero, Coordination Chemistry Reviews, 412 (2020) 213263. https://doi.org/10.1016/j.ccr.2020.213263.
J. A. Cruz-Navarro, F. Hernández-García, L. H. Mendoza-Huizar, V. Salazar-Pereda, J. Á. Cobos-Murcia, R. Colorado-Peralta, G. A. Álvarez-Romero, Solids 2 (2021) 212-231. https://doi.org/10.3390/solids2020014
S. Sandeep, A. S. Santhosh, N. K. Swamy, G. S. Suresh, J. S. Melo, N. A. Chamaraja, New Journal of Chemistry 42 (2018) 16620–16629. https://doi.org/10.1039/C8NJ02325E
H. Ishiguro, Y. Yao, R. Nakano, M. Hara, K. Sunada, K. Hashimoto, J. Kajioka, A. Fujishima, Y. Kubota, Applied Catalysis B: Environmental 129 (2013) 56–61. https://doi.org/10.1016/j.apcatb.2012.09.012
K. Sunada, T. Watanabe, K. Hashimoto, Environmental Science & Technology 37 (2003) 4785–4789. https://doi.org/10.1021/es034106g
J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Journal of Materials Chemistry 21 (2011) 14398. https://doi.org/10.1039/C1JM12620B
F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Angewandte Chemie 45 (2006) 4467–4471. https://doi.org/10.1002/anie.200600412
X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, Journal of the American Chemical Society 135 (2013) 18–21. https://doi.org/10.1021/ja308249k
X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Advanced Materials 21 (2009) 1609–1612. https://doi.org/10.1002/adma.200802627
G. Zhang, J. Zhang, M. Zhang, X. Wang, Journal of Materials Chemistry 22 (2012) 8083. https://doi.org/10.1039/C2JM00097K
S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir 25 (2009) 10397–10401. https://doi.org/10.1021/la900923z
K. S. Siddegowda, B. Mahesh, N. A. Chamaraja, B. Roopashree, N. Kumara Swamy, G. S. Nanjundswamy, Electroanalysis 32 (2020) 2183–2192. https://doi.org/10.1002/elan.202000010
Y. Li, J. Zhang, Q. Wang, Y. Jin, D. Huang, Q. Cui, G. Zou, Journal of Physical Chemistry B 114 (2010) 9429–9434. https://doi.org/10.1021/jp103729c
S. Sarkar, N. Kamboj, M. Das, T. Purkait, A. Biswas, R. S. Dey, Inorganic Chemistry 59 (2020) 1332–1339. https://doi.org/10.1021/acs.inorgchem.9b03042
B. P. Sanjay, N. Kumara Swamy, S. R. Yashas, S. Sandeep, Journal of the Electrochemical Society 168 (2021) 076511. https://doi.org/10.1149/1945-7111/ac1495P
P. Zhu Y. Zhao, Materials Chemistry and Physics 233 (2019) 60–67. https://doi.org/10.1016/j.matchemphys.2019.05.034
N. P. Shetti, S. J. Malode, S. T. Nandibewoor, Analytical Methods 7 (2015) 8673–8682. https://doi.org/10.1039/C5AY01619C
B. P. Sanjay, S. Sandeep, A. S. Santhosh, C. S. Karthik, D. N. Varun, N. Kumara Swamy, P. Mallu, K. S. Nithin, J. R. Rajabathar, K. Muthusamy, Chemosphere 287 (2022) 132153. https://doi.org/10.1016/j.chemosphere.2021.132153
S. R. Yashas, S. Sandeep, B. P. Shivakumar, N. K. Swamy, Analytical Methods 11 (2019) 4511–4519. https://doi.org/10.1039/C9AY01468C
A. A. Ensafi, A. R. Allafchian, R. Mohammadzadeh, Analytical Sciences 28 (2012) 705–710 (2012). https://doi.org/10.2116/analsci.28.705
L. Fotouhi, M. Alahyari, Colloids Surfaces B Biointerfaces 81 (2010) 110–114. https://doi.org/10.1016/j.colsurfb.2010.06.030
A. Pollap, K. Baran, N. Kuszewska, J. Kochana, Journal of Electroanalytical Chemistry 878 (2020) 114574. https://doi.org/10.1016/j.jelechem.2020.114574
J. M. Garrido, M. Melle-Franco, K. Strutynski, F. Borges, C. M. Brett, E. M. P. Garrido, Journal of Environmental Science and Health 52 (2017) 313–319. https://doi.org/10.1080/10934529.2016.1258864
K. S. Siddegowda, B. Mahesh, N. Kumara Swamy, Sensors and Actuators A 280 (2018) 277-286. https://doi.org/10.1016/j.sna.2018.07.049
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.