Cubic like CoMn2O4 nanostructures as advanced high-performance pseudocapacitive electrode

Original scientific paper

  • Puratchi Mani Department of Physics, As-Salam College of Engineering and Technology, Thirumangalakudi, Aduthurai- 612 012. India
  • Venkatachalam Vellaikasi Department of Physics, Sir Theagaraya College, Chennai -600 025, India https://orcid.org/0000-0002-1387-3308
  • Xavier Thankappan Suryabai Department of Physics, Centre for Advanced Material Research, Govt. College for Women, Thiruvananthapuram, Kerala- 695014, India https://orcid.org/0000-0001-8955-0743
  • Abraham Rajasekar Simon Department of Physics, Centre for Advanced Material Research, Govt. College for Women, Thiruvananthapuram, Kerala- 695014, India https://orcid.org/0000-0002-6813-5230
  • Thamizharasan Kattaiyan Department of Physics, Sir Theagaraya College, Chennai -600 025, India
Keywords: Hydrothermal method, faradaic capacitance, long-term stability, energy storage
Graphical Abstract

Abstract

In this work, a synthesis of cubic-like CoMn2O4 uniform nanostructures with KOH-NaOH involved in the hydrothermal method has been reported. The crystal structure phase purity, functional groups, and morphology of the CoMn2O4 have been investigated by X‑ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-reso­lution transmission electron microscopy (HR-TEM) analyses. The electrochemical beha­viour of CoMn2O4 electroactive material has been examined for supercapacitors. The elec­trode displays excellent capacitive behaviour with superior electrochemical properties. The cubic-like morphology structure with enough free space is beneficial for improving electrochemical performance. The CoMn2O4 electrode exhibits a faradaic capacitance with the highest specific capacitance value of 762.4 F g-1 at a scan rate of 5 mV s-1. The coulombic efficiency of the CoMn2O4 electrode was found to be 91.2 % after 2000 charging-discharging cycles. The nanostructures of CoMn2O4 make a prominent contr­ib0­ution to the excellent electrochemical performance of the prepared electrode.

Downloads

Download data is not yet available.

References

L. Li. H. Hu, S. Ding, Inorganic Chemistry Frontiers 5(7) (2018) 1714-1720. https://doi.org/10.1039/C8QI00121A

C. Zhu, R.-G. Lu, L. Tian, Q. Wang, IEEE Vehicle Power and Propulsion Conference (2006) 24172345. https://doi.org/10.1109/VPPC.2006.364372

Y. Wang, Y. Song, Y. Xia, Chemical Society Reviews 45(21) (2016) 5925-5950. https://doi.org/10.1039/C5CS00580A

X. Lu. D. Zheng. T. Zhai. Z. Liu. Y. Huang. S. Xie. Y. Tong, Energy and Environmental Science 4 (2011) 2915-2921. https://doi.org/10.1039/C1EE01338F

V. Venkatachalam. R. Jayavel, International Journal of ChemTech Research 6(13) (2014) 5404-5407. https://sphinxsai.com/2014/ch_vol6_no13/5/(5404-5407)%20014.pdf

B. Wang. J. S. Chen. Z. Wang. S. Madhavi. X. W. Lou, Advanced Energy Materials 2 (10) (2012) 1188-1192. https://doi.org/10.1002/aenm.201200008

D. H. Deng. H. Pang. J.M. Du. J. W. Deng. S. J. Li. J. Chen. J. S. Zhang, Crystal Research Technology 47(10) (2012) 1032-1038. https://doi.org/10.1002/crat.201200161

S. L. Kuo. N. L. Wu, Electrochemical and Solid-State Letters 8 (2005) A495-A499. https://doi.org/10.1149/1.2008847

V. Venkatachalam. A. Alsalme. A. Alghamdi. R. Jayavel, Journal of Electroanalytical Chemistry 756(1) (2015) 94-100. https://doi.org/10.1016/j.jelechem.2015.08.019

V. Venkatachalam, R. Jayavel, AIP Conference Proceedings 1665 (2015) 140016. https://doi.org/10.1063/1.4918225

Y. Zhang, Y. Ru, H.-L. Gao, S.-W. Wang, J. Yan, K.-Z. Gao, X.-D. Jia, H.-W. Luo, H. Fang, A.-Q. Zhang, L.-Z. Wang, Journal of Electrochemical Science and Engineering 9 (2019) 243-253. https://doi.org/10.5599/jese.690

Y. Xu, X.F. Wang. C. An, Y. Wang. L. Jiao, H. Yuan, Journal of Materials Chemistry A 2 (2014) 16480-16485. https://doi.org/10.1039/C4TA03123G

S. Jiang, T. Shi, H. Long, Y. Sun, W. Zhou, Z. Tang, Nanoscale Research Letters 9 (2014) 492-500. https://doi.org/10.1186/1556-276X-9-492

L. Ren, J. Chen, X. Q. Wang, M. J. Zhi, J. W. Wu, X. H. Zhang, RSC Advances 5 (2015) 30963-30969. https://doi.org/10.1039/C5RA02663F

X. Shi, F. Zheng, N. Yan, Q. Chen, Dalton Transactions 43 (2014) 13865-13873. https://doi.org/10.1039/C4DT01686F

H. T. Zhang, X. H. Chen, Nanotechnology 17(5) (2006) 1384-1390. https://doi.org/10.1088/0957-4484/17/5/037

S. A. Hosseini, D. Salari, A Niaei, F. Deganello, G. Pantaleo, P. Hojati, Journal of Environmental Science Health A 46(3) (2011) 291-296. https://doi.org/10.1080/10934529.2011.539093

K. S. Ujjain, P. Ahuja, R. K. Sharma, Journal of Materials Chemistry A 3 (2015) 9925-9931. https://doi.org/10.1039/C5TA00653H

S. G. Mohamed, C. J. Chen, C. K. Chen, S. F. Hu, R. S. Liu, ACS Applied Materials Interfaces 6 (24) (2014) 22701-22708. https://doi.org/10.1021/am5068244

E. Jokar, A. I. Zad, S. Shahrokhian, Journal of Solid-State Electrochemistry 19 (2015) 269-276. https://doi.org/10.1007/s10008-014-2592-y

B. H. Kim, C. H. Kim, K. S. Yang, A. Rahy, D. J. Yang, Electrochimica Acta 83 (30) (2012) 335-340. https://doi.org/10.1016/j.electacta.2012.07.093

D. Gao, L. Wang. X. Xia. H. Qiao. Y. Cai. F. Huang. K. Gupta. Q. Wei. S. Kumar. Journal of Engineered Fibers and Fabrics 8 (4) (2013) 108-113. https://doi.org/10.1177%2F155892501300800405

F. Chen, Z. Wang, S. Huo, S. Ji, H. Wang, P. Zhou. Materials Letters 237 (15) (2019) 209-212. https://doi.org/10.1016/j.matlet.2018.11.100

S. Alkhalaf, C. K. Ranaweera, P. K. Kahol, K. Siam, H. Adhikari, S. R. Mishra, F. Perez, B. K. Gupta, K. Ramasamy, R .K Gupta, Journal of Alloys and Compounds 692 (25) (2017) 59-66. https://doi.org/10.1016/j.jallcom.2016.09.005

T. Anitha, A. E. Reddy, R. Vinodh, H. J. Kim, Y. R. Cho, Journal of Energy Storage 30 (2020) 101483. https://doi.org/10.1016/j.est.2020.101483

J. L. Liu, L. Zhenfan, X. Qu, Electrochimica Acta 66(1) (2012) 302-305. https://doi.org/10.1016/j.electacta.2012.01.095

T. Antony Sandosh, A. Simi, Chemical Papers 75 (2021) 2295-2304. https://doi.org/10.1007/s11696-020-01448-z

Published
18-07-2022
Section
Batteries and supercapcitors