Effect of KOH concentration on corrosion behavior and surface morphology of stainless steel 316L for HHO generator application
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1615Keywords:
Corrosion rate, KOH media, passive film, hydrogen generatorAbstract
Hydrogen production could be enhanced by increasing the potassium hydroxide (KOH) concentration, but higher KOH concentrations result in higher corrosion rates. Therefore, a deep investigation of the electrochemical behavior of stainless steel (SS 316L) in the KOH solution is needed. This study investigates the influence of KOH concentrations on the electrochemical behavior, surface morphology, structure, and sample phases of SS 316L. The investigations were conducted by some electrochemical techniques, UV-vis, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and X-ray diffraction (XRD). The corrosion rate was found to increase, and solution resistance to decrease with increasing KOH concentration. Samples tested in 5, 30, and 50 g l-1 of KOH showed corrosion rates of 0.457, 2.362, and 5.613 µm year-1, respectively. A wide passive region and the noblest pitting potential were noticed for the sample with 5 g l-1 of KOH. Moreover, Mott-Schottky plots and characteristic wavelengths of UV-Vis suggest the formation of iron and chromium oxides by the passivation of samples. The SEM analysis showed a dynamic change of surface morphology from the lowest to the highest concentration with the intergranular corrosion found at the grain boundaries area. In conclusion, concentrations < 50 g l-1 KOH could be recommended since they would support the optimum remaining life of SS 316 L plates in HHO generators.
Downloads
References
M. A. El Kady, A. El Fatih Farrag, M. S. Gad, A. K. El Soly, H. M. Abu Hashish, Parametric study and experimental investigation of hydroxy (HHO) production using dry cell, Fuel 282 (2020) 118825. https://doi.org/10.1016/j.fuel.2020.118825
T. Nabil, M. M. K. Dawood, Enabling efficient use of oxy-hydrogen gas (HHO) in selected engineering applications; transportation and sustainable power generation, Journal of Cleaner Production 237 (2019) 117798. https://doi.org/10.1016/j.jclepro.2019.117798
M. M. A. Sayed, M. S. Shalaby, W. Rady, W. Hussien, M. Magdy, K. El-Sabagh, A. Mohamed, A. Nour Eldin, F. Maher, M. Osama, Design of HHO cell as energy source for electric vehicles, IOP Conference Series: Materials Science and Engineering 610 (2019) 012089. https://doi.org/10.1088/1757-899X/610/1/012089
H. Adamu, M. Qamar, Routes to enhanced performance of electrolytic hydrogen evolution reaction over the carbon-encapsulated transition metal alloys, Journal of Electrochemical Science and Engineering 12 (2022) 947–974. https://doi.org/10.5599/jese.1446
M. S. Genç, M. Çelik, I. Karasu, A review on wind energy and wind-hydrogen production in Turkey: A case study of hydrogen production via electrolysis system supplied by wind energy conversion system in Central Anatolian Turkey, Renewable and Sustainable Energy Reviews 16 (2012) 6631–6646. https://doi.org/10.1016/j.rser.2012.08.011
G. Zhao, A. S. Pedersen, Life Cycle Assessment of Hydrogen Production and Consumption in an Isolated Territory, Procedia CIRP 69 (2018) 529–533. https://doi.org/10.1016/j.procir.2017.11.100
E. Schropp, G. Naumann, M. Gaderer, Prospective Life Cycle Assessment: A Case Study of Hydrogen Production with Water Electrolysis, Procedia CIRP 105 (2022) 92–97. https://doi.org/10.1016/j.procir.2022.02.016
A. Sudrajat, E. Mayfa Handayani, N. Tamaldin, A. Kamal Mat Yamin, Principle of generator HHO hybrid multistack type production technologies to increase HHO gas volume, SHS Web of Conferences 49 (2018) 02016. https://doi.org/10.1051/shsconf/20184902016
N. Choodum, C. Sangwichien, R. Yamsaengsung, Optimization of a closed-loop HHO production system for vehicles and houses, Environmental Progress and Sustainable Energy 38 (2019) 268–277. https://doi.org/10.1002/ep.12909
B. Subramanian, V. Thangavel, Analysis of onsite HHO gas generation system, International Journal of Hydrogen Energy 45 (2020) 14218–14231. https://doi.org/10.1016/j.ijhydene.2020.03.159
H. Tebibel, A. Khellaf, S. Menia, I. Nouicer, Design, modelling and optimal power and hydrogen management strategy of an off grid PV system for hydrogen production using methanol electrolysis, International Journal of Hydrogen Energy 42 (2017) 14950–14967. https://doi.org/10.1016/j.ijhydene.2017.05.010
Y. Bow, T. Dewi, HHO Gas Generation in Hydrogen Generator using Electrolysis, IOP Conference Series: Earth and Environmental Science 258 (2019) 012007. https://doi.org/10.1088/1755-1315/258/1/012007
K. Praveen, M. Sethumadhavan, On the extension of XOR step construction for optimal contrast grey level visual cryptography, 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI, (2017) 219–222. https://doi.org/10.1109/ICACCI.2017.8125843
M. H. Sellami, K. Loudiyi, Electrolytes behavior during hydrogen production by solar energy, Renewable and Sustainable Energy Reviews 70 (2017) 1331–1335. https://doi.org/10.1016/j.rser.2016.12.034
M. M. El-Kassaby, Y. A. Eldrainy, M. E. Khidr, K. I. Khidr, Effect of hydroxy (HHO) gas addition on gasoline engine performance and emissions, Alexandria Engineering Journal 55 (2016) 243–251. https://doi.org/10.1016/j.aej.2015.10.016
N. Alam, K. M. Pandey, Experimental Study of Hydroxy Gas (HHO) Production with Variation in Current, Voltage and Electrolyte Concentration, IOP Conference Series: Materials Science and Engineering 225 (2017) 012197. https://doi.org/10.1088/1757-899X/225/1/012197
R. Purwondho, A. Sudrajat, Handoko, Research on the effect of SS316L electrode plate treatment on HHO gas production performance, IOP Conference Series: Earth and Environmental Science 794 (2021) 012021. https://doi.org/10.1088/1755-1315/794/1/012021
I. Hamidah, A. Solehudin, A. Setiawan, A. Hamdani, M. A. S. Hidayat, F. Adityawarman, F. Khoirunnisa, A. B. D. Nandiyanto, Corrosion study of AISI 304 on KOH, NaOH, and NaCl solution as an electrode on electrolysis process, Journal of Engineering Science and Technology 13 (2018) 1345–1351.
B. Subramanian, S. Ismail, Production and use of HHO gas in IC engines, International Journal of Hydrogen Energy 43 (2018) 7140–7154. https://doi.org/10.1016/j.ijhydene.2018.02.120.
I. Hamidah, A. Solehudin, A. Setiawan, Effect of variation of kalium hydroxide solution concentration and temperature to the corrosion resistance of AISI 304, AISI 316, and copper alloys in water electrolysis apparatus, ARPN Journal of Engineering and Applied Sciences 11 (2016) 972–977.
J. M. Olivares-Ramírez, M. L. Campos-Cornelio, J. Uribe Godínez, E. Borja-Arco, R. H. Castellanos, Studies on the hydrogen evolution reaction on different stainless steels, International Journal of Hydrogen Energy 32 (2007) 3170–3173. https://doi.org/10.1016/j.ijhydene.2006.03.017
H. A. Abdulaah, A. M. Al-Ghaban, R. A. Anaee, A. A. Khadom, M. M. Kadhim, Cerium-tricalcium phosphate coating for 316L stainless steel in simulated human fluid: Experimental, biological, theoretical, and electrochemical investigations, Journal of Electrochemical Science and Engineering 13 (2023) 115-126. https://doi.org/10.5599/jese.1257
A. C. Schoeler, T. D. Kaun, I. Bloom, M. Lanagan, M. Krumpelt, Corrosion Behavior and Interfacial Resistivity of Bipolar Plate Materials under Molten Carbonate Fuel Cell Cathode Conditions, Journal of The Electrochemical Society 147 (2000) 916. https://doi.org/10.1149/1.1393292
M. Singh, H. Vasudev, M. Singh, Surface protection of SS-316L with boron nitride based thin films using radio frequency magnetron sputtering technique, Journal of Electrochemical Science and Engineering 12 (2022) 851–863. https://doi.org/10.5599/jese.1247
A. L. Yuvaraj, D. Santhanaraj, A systematic study on electrolytic production of hydrogen gas by using graphite as electrode, Materials Research 17 (2014) 83–87. https://doi.org/10.1590/S1516-14392013005000153
B. Amuzu-Sefordzi, J. Y. Huang, Effects of Increasing Alkali Catalysts Concentration on Hydrogen Gas Yield during the Supercritical Water Gasification of Food Waste, Advanced Materials Research 1073–1076 (2014) 905–910. https://doi.org/10.4028/www.scientific.net/amr.1073-1076.905
P. Katsoufis, E. Doukas, C. Politis, G. Avgouropoulos, P. Lianos, Enhanced rate of hydrogen production by corrosion of commercial aluminum, International Journal of Hydrogen Energy 45 (2020) 10729–10734. https://doi.org/10.1016/j.ijhydene.2020.01.215
X. L. Zhang, Z. H. Jiang, Z. P. Yao, Y. Song, Z. D. Wu, Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density, Corrosion Science 51 (2009) 581–587. https://doi.org/10.1016/j.corsci.2008.12.005
Q. Liu, Q. Sun, S. Wang, K. Chen, Effect of scan rate on polarization curves of a high strength Al alloy in 3.5 wt% NaCl solution, International Journal of Electrochemical Science 16 (2021) 21113. https://doi.org/10.20964/2021.11.05
Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control, 1st ed., Butterworth-Heinemann, Oxford, United Kingdom, 2006. https://doi.org/10.1016/b978-0-7506-5924-6.x5000-4
M. Talha, C. K. Behera, O. P. Sinha, Potentiodynamic polarization study of Type 316L and 316LVM stainless steels for surgical implants in simulated body fluids, Journal of Chemical and Pharmaceutical Research 4 (2012) 203–208.
I. Gurappa, Characterization of different materials for corrosion resistance under simulated body fluid conditions, Materials Characterization 49 (2002) 73–79. https://doi.org/10.1016/S1044-5803(02)00320-0
J. Wojciechowski, Ł. Kolanowski, A. Bund, G. Lota, The influence of current collector corrosion on the performance of electrochemical capacitors, Journal of Power Sources 368 (2017) 18–29. https://doi.org/10.1016/j.jpowsour.2017.09.069
F. E. T. Heakal, O. S. Shehata, N. S. Tantawy, Integrity of metallic medical implants in physio¬logical solutions, International Journal of Electrochemical Science 9 (2014) 1986–2004.
W. M. F. W. Mohamad, M. Z. Selamat, B. Bundjali, M. Musa, Effect of cold rolling process on the microstructure and corrosion behaviors of 316L stainless steel in simulated body fluids, Applied Mechanics and Materials 548–549 (2014) 310–315. https://doi.org/10.4028/www.scientific.net/AMM.548-549.310
F. B. Susetyo, B. Soegijono, Yusmaniar, M. C. Fajrah, M. Cahya, Deposition of nickel films on polycrystalline copper alloy with various current densities from watts solution Deposition of Nickel Films on Polycrystalline Copper Alloy with Various Current Densities from Watts Solution, AIP Conference Proceedings 2331 (2021) 030017. https://doi.org/10.1063/5.0041640
R. Davalos, M. Jan, V.D.W. Benjamin, K. Dirk, Corrosion Behaviour of Type 316L Stainless Steel in Hot Caustic Aqueous Environments, Metals and Materials International 26 (2019) 630–640. https://doi.org/10.1007/s12540-019-00403-2
F. Budhi Susetyo, A. Faridh, B. Soegijono, Stirring Effect on Surface Morphology, Structure, and Electrochemical Behavior of Electrodeposited Nickel Film on Copper Substrates, IOP Conference Series: Materials Science and Engineering 694 (2019) 012040. https://doi.org/10.1088/1757-899X/694/1/012040
Z. Feng, X. Cheng, C. Dong, L. Xu, X. Li, Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy, Corrosion Science 52 (2010) 3646–3653. https://doi.org/10.1016/j.corsci.2010.07.013
F. Nasirpouri, M. R. Sanaeian, A. S. Samardak, E. V. Sukovatitsina, A. V. Ognev, L. A. Chebotkevich, M. G. Hosseini, M. Abdolmaleki, An investigation on the effect of surface morphology and crystalline texture on corrosion behavior, structural and magnetic properties of electrodeposited nanocrystalline nickel films, Applied Surface Science 292 (2014) 795–805. https://doi.org/10.1016/j.apsusc.2013.12.053
B. Krawczyk, P. Cook, J. Hobbs, D. L. Engelberg, Corrosion behavior of cold rolled type 316L stainless steel in HCl-containing environments, Corrosion 73 (2017) 1346–1358. https://doi.org/10.5006/2415
X. Fang, H. Zhou, Y. Xue, Corrosion properties of stainless steel 316L/Ni–Cu–P coatings in warm acidic solution, Transactions of Nonferrous Metals Society of China 25 (2015) 2594–2600. https://doi.org/10.1016/S1003-6326(15)63880-8
A. Hossain, F. Gulshan, A. S. W. Kurny, Electrochemical corrosion behavior of Ni-containing hypoeutectic Al-Si alloy, Journal of Electrochemical Science and Engineering 5 (2015) 173–179. https://doi.org/10.5599/jese.174
A. Fattah-Alhosseini, A. Saatchi, M. A. Golozar, K. Raeissi, The passivity of AISI 316L stainless steel in 0.05 M H2SO4, Journal of Applied Electrochemistry 40 (2010) 457–461. https://doi.org/10.1007/s10800-009-0016-y
J. Huang, X. Wu, E. H. Han, Influence of pH on electrochemical properties of passive films formed on Alloy 690 in high temperature aqueous environments, Corrosion Science 51 (2009) 2976–2982. https://doi.org/10.1016/j.corsci.2009.08.002
T. Dan, T. Shoji, Z. Lu, K. Sakaguchi, J. Wang, E. H. Han, W. Ke, Effects of hydrogen on the anodic behavior of Alloy 690 at 60 °C, Corrosion Science 52 (2010) 1228–1236. https://doi.org/10.1016/j.corsci.2009.11.039.
A. Fattah-Alhosseini, S. Vafaeian, Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott-Schottky analysis and EIS measurements, Journal of Alloys and Compounds 639 (2015) 301–307. https://doi.org/10.1016/j.jallcom.2015.03.142
N. B. Hakiki, S. Boudin, B. Rondot, M. Da Cunha Belo, The electronic structure of passive films formed on stainless steels, Corrosion Science 37 (1995) 1809–1822. https://doi.org/10.1016/0010-938X(95)00084-W
C. Sunseri, S. Piazza, F. Di Quarto, Photocurrent Spectroscopic Investigations of Passive Films on Chromium, Journal of The Electrochemical Society 137 (1990) 2411–2417. https://doi.org/10.1149/1.2086952
H. R. Ghorbani, F. P. Mehr, H. Pazoki, B. M. Rahmani, Synthesis of ZnO nanoparticles by precipitation method, Oriental Journal of Chemistry 31 (2015) 1219–1221. https://doi.org/10.13005/ojc/310281
S. Jain, A. Jain, P. Kachhawah, V. Devra, Synthesis and size control of copper nanoparticles and their catalytic application, Transactions of Nonferrous Metals Society of China (English Edition) 25 (2015) 3995–4000. https://doi.org/10.1016/S1003-6326(15)64048-1
M. El-Kemary, N. Nagy, I. El-Mehasseb, Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose, Materials Science in Semiconductor Processing 16 (2013) 1747–1752. https://doi.org/10.1016/j.mssp.2013.05.018
M. Lu, Y. Cui, S. Zhao, A. Fakhri, Cr2O3/cellulose hybrid nanocomposites with unique properties: Facile synthesis, photocatalytic, bactericidal and antioxidant application, Journal of Photochemistry and Photobiology B: Biology 205 (2020) 111842. https://doi.org/10.1016/j.jphotobiol.2020.111842
Z. S. Ma, H. L. Ding, Z. Liu, Z. L. Cheng, Preparation and tribological properties of hydrothermally exfoliated ultrathin hexagonal boron nitride nanosheets (BNNSs) in mixed NaOH/KOH solution, Journal of Alloys and Compounds 784 (2019) 807–815. https://doi.org/10.1016/j.jallcom.2019.01.108
S. Nasrazadani, J. Diaz, J. Stevens, R. Theimer, Effects of DBU, morpholine, and DMA on corrosion of low carbon steel exposed to steam, Corrosion Science 49 (2007) 3024–3039. https://doi.org/10.1016/j.corsci.2007.01.012
H. Du, Y. Cheng, L. Hou, Y. Li, Y. Wei, Evolution of intergranular corrosion resistance for HR3C heat-resistant austenitic stainless steel at elevated temperature, Corrosion Engineering Science and Technology 52 (2017) 343–348. https://doi.org/10.1080/1478422X.2017.1291119
Y. R. Galindo-Luna, A. Torres-Islas, R. J. Romero, M. Montiel-González, S. Serna, Corrosion behavior of AISI 316L stainless steel in a NaOH-H2O mixture, International Journal of Electrochemical Science 13 (2018) 631–641. https://doi.org/10.20964/2018.01.64
Y. Cai, X. Luo, M. Maclean, Y. Qin, M. Duxbury, F. Ding, A single-step fabrication approach for development of antimicrobial surfaces, Journal of Materials Processing Technology 271 (2019) 249–260. https://doi.org/10.1016/j.jmatprotec.2019.04.012
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.