Sensitive electrochemical detection of bisphenol A at screen-printed graphite electrode modified with nitrogen-doped graphene sheets
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1103Keywords:
voltammetric sensor, high sensitivity, lengthy stability, reproducibilityAbstract
A novel voltammetric sensor was developed by modifying screen-printed graphite electrode (SPGE) with nitrogen doped graphene sheets (N-GSs) to detect bisphenol A. The electrochemical results exhibited that N-GSs / modified SPGE has high sensing performance towards the oxidation of bisphenol A. Excellent results were obtained for bisphenol A detection in the linear range from 0.08 to 300.0 µM with a sensitivity of 0.1626 µA µM-1 and limit of detection of 0.02 µM. Also, the fabricated N‑GSs/SPGE sensor showed good stability. The as-prepared sensor was tested towards the detection of bisphenol A in real samples. The measured results established the great sensing ability of N-GSs/SPGE for bisphenol A with high selectivity and good stability in real samples.
Downloads
References
W. Guo, A. Zhang, X. Zhang, C. Huang, D. Yang, N. Jia, Analytical and Bioanalytical Chemistry 408 (2016) 7173-7180. https://doi.org/10.1007/s00216-016-9746-y
A. Ghanam, A. A. Lahcen, A. Amine, Journal of Electroanalytical Chemistry 789 (2017) 58-66. https://doi.org/10.1016/j.jelechem.2017.02.026
G. F. Pereira, L. S. Andrade, R. C. Rocha-Filho, N. Bocchi, S. R. Biaggio, Electrochimica Acta 82 (2012) 3-8. https://doi.org/10.1016/j.electacta.2012.03.157
C. Hou, W. Tang, C. Zhang, Y. Wang, N. Zhu, Electrochimica Acta 144 (2014) 324-331. https://doi.org/10.1016/j.electacta.2014.08.053
K. Deng, X. Liu, C. Li, Z. Hou, H. Huang, Analytical Methods 9 (2017) 5509-5517. https://doi.org/10.1039/C7AY01573A
R. Zhang, L. Zhao, R. Liu, Journal of Photochemistry and Photobiology B: Biology 163 (2016) 40-46. https://doi.org/10.1016/j.jphotobiol.2016.08.011
L. Ren, J. Fang, G. Liu, J. Zhang, Z. Zhu, H. Liu, K. Lin, H. Zhang, S. Lu, Analytical and Bioanalytical Chemistry 408 (2016) 2621-2629. https://doi.org/10.1007/s00216-016-9372-8
T. E. Arbuckle, L. Marro, K. Davis, M. Fisher, P. Ayotte, P. Bélanger, P. Dumas, A. Leblanc, R. Bérubé, É. Gaudreau, Environmental Health Perspectives 123 (2015) 277-284. https://doi.org/10.1289/ehp.1408187
C. Hou, L. Zhao, F. Geng, D. Wang, L. H. Guo, Analytical and Bioanalytical Chemistry 408 (2016) 8795–8804. https://doi.org/10.1007/s00216-016-9584-y
G. Bolat, Y. T. Yaman, S. Abaci, Sensors and Actuators B: Chemical 255 (2018) 140-148. https://doi.org/10.1016/j.snb.2017.08.001
Y. Tian, P. Deng, Y. Wu, J. Li, J. Liu, G. Li, Q. He, Journal of the Electrochemical Society 167 (2020) 046514. https://doi.org/10.1149/1945-7111/ab79a7
D. N. Unal, E. Eksin, A. Erdem, Analytical Letters 51 (2018) 265-278. https://doi.org/10.1080/00032719.2017.1338714
M. Pirozmand, A. Nezhadali, M. Payehghadr, L. Saghatforoush, Eurasian Chemical Communications 2 (2020) 1021-1032. https://doi.org/10.22034/ECC.2020.241560.1063
A. Khodadadi, E. Faghih-Mirzaei, H. Karimi-Maleh, A. Abbaspourrad, S. Agarwal, V. K. Gupta, Sensors & Actuators, B: Chemical 284 (2019) 568-574. https://doi.org/10.1016/j.snb.2018.12.164
S. M. Patil, V. P. Pattar, S. T. Nandibewoor, Journal of Electrochemical Science and Engineering 6 (2016) 265-276. https://doi.org/10.5599/jese.308
P. Prasad, N. Y. Sreedhar, Chemical Methodologies 2 (2018) 277-290. https://doi.org/10.22034/CHEMM.2018.63835
A. Smart, A. Crew, R. Pemberton, G. Hughes, O. Doran, J.P. Hart, TrAC Trends in Analytical Chemistry 127 (2020) 115898. https://doi.org/10.1016/j.trac.2020.115898
A. Vasilescu, G. Nunes, A. Hayat, U. Latif, J. L. Marty, Sensors 16 (2016) 1863. https://doi.org/10.3390/s16111863
R. K. Mishra, G. S. Nunes, L. Souto, J. L. Marty, Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry (2018) 487-498.
J. M. Díaz-Cruz, N. Serrano, C. Pérez-Ràfols, C. Ariño, M. Esteban, Journal of Solid State Electrochemistry 24 (2020) 2653-2661. https://doi.org/10.1007/s10008-020-04733-9
F. Mehri-Talarposhti, A. Ghorbani-Hasan Saraei, L. Golestan, S. A. Shahidi, Asian Journal of Nanosciences and Materials 3 (2020) 313-320. DOI: 10.26655/AJNANOMAT.2020.4.5
A. A. S. Mou, A. Ouarzane, M. El Rhazi, Journal of Electrochemical Science and Engineering 7 (2017) 111-118. https://doi.org/10.5599/jese.386
Y. Zhang, X. Li, D. Li, Q. Wei, Colloids and Surfaces B: Biointerfaces 186 (2020) 110683. https://doi.org/10.1016/j.colsurfb.2019.110683
H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen, Scientific Reports 10 (2020) 11699.https://doi.org/10.1038/s41598-020-68663-2
C. Chen, Z. Han, W. Lei, Y. Ding, J. Lv, M. Xia, Q. Hao, Journal of Electrochemical Science and Engineering 9 (2019) 143-152. https://doi.org/10.5599/jese.630
H. Karimi-Maleh, M. Lütfi Yola, N. Atar, Y. Orooji, F. Karimi, P. Senthil Kumar, J. Rouhi, M. Baghayeri, Journal of Colloid and Interface Science 592 (2021) 174-185. https://doi.org/10.1016/j.jcis.2021.02.066
S. Mohajeri, A. Dolati, K. Yazdanbakhsh, Journal of Electrochemical Science and Engineering 9 (2019) 207-222. https://doi.org/10.5599/jese.666
J. Ghodsi, A. A. Rafati, Y. Shoja, Advanced Journal of Chemistry-Section A 1 (2018) 39-55. https://doi.org/10.29088/SAMI/AJCA.2018.5.3955
H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Materials Chemistry and Physics 250 (2020) 123042. https://doi.org/10.1016/j.matchemphys.2020.123042
W. H. Elobeid, A. A. Elbashir, Progress in Chemical and Biochemical Research 2 (2019) 24-33. https://doi.org/10.33945/SAMI/PCBR.2019.2.2433
H. Karimi-Maleh, F. Karimi, S. Malekmohammadi, N. Zakariae, R. Esmaeili, S. Rostamnia, M. Lütfi Yola, N. Atar, S. Movaghgharnezhad, S. Rajendran, A. Razmjou, Y. Orooji, S. Agarwal, V. K. Gupta, Journal of Molecular Liquids 310 (2020) 113185. https://doi.org/10.1016/j.molliq.2020.113185
H. Zhao, H. Ma, X. Li, B. Liu, R. Liu, S. Komarneni, Applied Clay Science 200 (2021) 105907. https://doi.org/10.1016/j.clay.2020.105907
K. Roja, P. R. Prasad, P. Sandhya, N. Y. Sreedhar, Journal of Electrochemical Science and Engineering 6 (2016) 253-263. https://doi.org/10.5599/jese.349
M. Coroş, S. Pruneanu, R. I. Stefan-van Staden, Journal of the electrochemical society 167 (2019) 037528. https://doi.org/10.1149/2.0282003JES
L. Fotouhi, M. Fatollahzadeh, M. M. Heravi, International Journal of Electrochemical Science 7 (2012) 3919–3928.
J. Kremeskotter, R. Wilson, D. J. Schiffrin, B. J. Luff, J. S. Wilkinson, Measurement Science and Technology 6 (1995) 1325–1328.
B. Fang, A. Gu, G. Wang, W. Wang, Y. Feng, C. Zhang, X. Zhang, ACS Applied Materials & Interfaces 12 (2009) 2829–2834. https://doi.org/10.1021/am900576z
M. B. Gholivand, L. M. Behzad, Journal of Electroanalytical Chemistry 712 (2014) 33–39. https://doi.org/10.1016/j.jelechem.2013.10.024
S. Felix, P. Kollu, S. K. Jeong, A. N. Grace, Applied Physics A 123 (2017) 1-9. https://doi.org/10.1007/s00339-017-1217-6
Y. Zhang, W. Lei, Q. Wu, X. Xia, Q. Hao, Microchimica Acta 184 (2017) 3103-3111. https://doi.org/10.1007/s00604-017-2332-y
F. Foroughi, M. Rahsepar, H. Kim, Journal of Electroanalytical Chemistry 827 (2018) 34-41. https://doi.org/10.1016/j.jelechem.2018.09.008
A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edition. John Wiley & Sons, New York, USA, 2001. ISBN 978-0-471-04372-0
						

