Potential effect of nanoformulated iota carrageenan in Aβ1-42 disaggregation: an in vitro, in vivo and in silico study
Original scientific article
DOI:
https://doi.org/10.5599/admet.3122Keywords:
Alzheimer's disease, neurodegenerative disease, neurite outgrowth, mental health, β-amyloidAbstract
Background and purpose: Alzheimer's disease is the primary contributor to neurodegenerative conditions. These pathologies are identified by the deposition of β-amyloid peptide within brain regions. It develops insoluble fibrils known as senile plaques. These plaques are associated with synaptic dysfunction, neuroinflammation, and progressive cognitive decline. Hence, the degradation and elimination of β-amyloid peptide fibrils from the body are viable therapeutic approaches for managing Alzheimer’s disease. Experimental approach: In the current study, liposomal nanoformulated iota carrageenan was synthesized and characterized using different photophysical tools. The nanoformulated iota carrageenan effectively degraded β-amyloid peptide 1-42, with 45.5 % reduction confirmed by Thioflavin T fluorescence assay. This activity was further supported by turbidity and dynamic light scattering analysis. Key results: The biocompatibility of nanoformulated iota carrageenan and its degraded β-amyloid peptide was determined using an 3-(4,5-dimethylthiazol-
-2-yl)-2,5-diphenyltetrazolium bromide (MTT), live/dead cell assay on PC12 cells. Structural disintegration of the β-amyloid peptide fibrils was validated through atomic force microscopy, revealing a significant reduction in fibrillar morphology. In silico studies also evidenced the interaction between the β-amyloid peptide and nanoformulated iota carrageenan. In addition, the neuroprotective potential of nanoformulated iota carrageenan, as evidenced by nanoformulated iota carrageenan-treated β-amyloid peptide, was supported by neurite outgrowth studies. These studies showed that differentiated PC12 cells exhibited larger neurite growth with extensive branching, indicating the reversal of β-amyloid peptide-induced neurotoxicity. CAM assay demonstrated enhanced blood vessel formation in chick embryos treated with nanoformulated iota carrageenan and its β-amyloid peptide-degraded group. Conclusion: These findings suggest that nanoformulated iota carrageenan holds potential and has nontoxic therapeutic effects for Alzheimer’s disease. Additional in vivo validation is required in future investigations.
Downloads
References
[1] A.I. Sulatskaya, G.N. Rychkov, M.I. Sulatsky, E.V. Mikhailova, N.M. Melnikova, V.S. Andozhskaya, I.M. Kuznetsova, K.K. Turoverov. New Evidence on a Distinction between Aβ40 and Aβ42 Amyloids: Thioflavin T Binding Modes, Clustering Tendency, Degradation Resistance, and Cross-Seeding. International Journal of Molecular Sciences 23 (2022) 5513. https://dx.doi.org/10.3390/ijms23105513 DOI: https://doi.org/10.3390/ijms23105513
[2] M.I. Sulatsky, O.V. Stepanenko, O.V. Stepanenko, A.I. Sulatskaya. Solving the Amyloid Paradox: Unveiling the Complex Pathogenicity of Amyloid Fibrils. Aggregate 6 (2025) e70078. https://dx.doi.org/10.1002/agt2.70078 DOI: https://doi.org/10.1002/agt2.70078
[3] A.A. Singh, F. Khan, M. Song. Biofilm-Associated Amyloid Proteins Linked with the Progression of Neurodegenerative Diseases. International Journal of Molecular Sciences 26 (2025) 2695. https://dx.doi.org/10.3390/ijms26062695 DOI: https://doi.org/10.3390/ijms26062695
[4] A. Padmanaban, G. Taarika, R.V. Geetha, P. Royapuram. Attenuation of Oxidative Stress and Anti-Alzheimer Effect of Ursolic Acid. Texila International Journal of Public Health 13 (2025) 940-948. https://dx.doi.org/10.21522/TIJPH.2013.13.01.Art087 DOI: https://doi.org/10.21522/TIJPH.2013.13.01.Art087
[5] A. Pasieka, D. Panek, N. Szałaj, A. Espargaró, A. Więckowska, B. Malawska, R. Sabaté, M. Bajda. Dual Inhibitors of Amyloid-β and Tau Aggregation with Amyloid-β Disaggregating Properties: Extended In Cellulo, in silico, and Kinetic Studies of Multifunctional Anti-Alzheimer’s Agents. ACS Chemical Neuroscience 12 (2021) 2057-2068. https://dx.doi.org/10.1021/acschemneuro.1c00235 DOI: https://doi.org/10.1021/acschemneuro.1c00235
[6] C.J. Proctor, I.S. Pienaar, J.L. Elson, T.B.L. Kirkwood. Aggregation, impaired degradation and immunization targeting of amyloid-beta dimers in Alzheimer’s disease: a stochastic modelling approach. Molecular Neurodegeneration 7 (2012) 32. https://dx.doi.org/10.1186/1750-1326-7-32 DOI: https://doi.org/10.1186/1750-1326-7-32
[7] S.K. Metkar, A. Girigoswami, D.D. Bondage, U.G. Shinde, K. Girigoswami. The potential of lumbrokinase and serratiopeptidase for the degradation of Aβ1-42 peptide - an in vitro and in silico approach. International Journal of Neuroscience 134 (2024) 112-123. https://dx.doi.org/10.1080/00207454.2022.2089137
[8] U. Sehar, P. Rawat, A.P. Reddy, J. Kopel, P.H. Reddy. Amyloid Beta in Aging and Alzheimer’s Disease. International Journal of Molecular Sciences 23 (2022) 12924. https://dx.doi.org/10.3390/ijms232112924 DOI: https://doi.org/10.3390/ijms232112924
[9] B.R. Sahoo, P.K. Panda, W. Liang, W.-J. Tang, R. Ahuja, A. Ramamoorthy. Degradation of Alzheimer’s Amyloid-β by a Catalytically Inactive Insulin-Degrading Enzyme. Journal of Molecular Biology 433 (2021) 166993. https://dx.doi.org/10.1016/j.jmb.2021.166993 DOI: https://doi.org/10.1016/j.jmb.2021.166993
[10] I. Ahmed, E.M. Jones. Importance of micelle-like multimers in the atypical aggregation kinetics of N-terminal serum amyloid A peptides. FEBS Letters 593 (2019) 518-526. https://dx.doi.org/10.1002/1873-3468.13334 DOI: https://doi.org/10.1002/1873-3468.13334
[11] S.K. Chaturvedi, P. Alam, J.M. Khan, M.K. Siddiqui, P. Kalaiarasan, N. Subbarao, Z. Ahmad, R.H. Khan. Biophysical insight into the anti-amyloidogenic behavior of taurine. International Journal of Biological Macromolecules 80 (2015) 375-384. https://dx.doi.org/10.1016/j.ijbiomac.2015.06.035 DOI: https://doi.org/10.1016/j.ijbiomac.2015.06.035
[12] M.I. Sulatsky, O.V. Stepanenko, O.V. Stepanenko, E.V. Mikhailova, I.M. Kuznetsova, K.K. Turoverov, A.I. Sulatskaya. Amyloid fibrils degradation: the pathway to recovery or aggravation of the disease? Frontiers in Molecular Biosciences 10 (2023). https://dx.doi.org/10.3389/fmolb.2023.1208059 DOI: https://doi.org/10.3389/fmolb.2023.1208059
[13] P. López-García, M.M. Tejero-Ojeda, M.E. Vaquero, M. Carrión-Vázquez. Current amyloid inhibitors: Therapeutic applications and nanomaterial-based innovations. Progress in Neurobiology 247 (2025) 102734. https://dx.doi.org/10.1016/j.pneurobio.2025.102734 DOI: https://doi.org/10.1016/j.pneurobio.2025.102734
[14] J.S. Katz, H. Slika, S.A. Sattari, A.P. Malla, Y. Xia, A. Antar, K. Ran, B. Tyler. Overcoming the Blood-Brain Barrier for Drug Delivery to the Brain. ACS Omega 10 (2025) 32544-32563. https://dx.doi.org/10.1021/acsomega.5c00364 DOI: https://doi.org/10.1021/acsomega.5c00364
[15] D. Senanayake, P. Yapa, S. Dabare, I. Munaweera. Precision targeting of the CNS: recent progress in brain-directed nanodrug delivery. RSC Advances 15 (2025) 25910-25928. https://dx.doi.org/10.1039/D5RA03578C DOI: https://doi.org/10.1039/D5RA03578C
[16] S. Ozawa, Y. Hori, Y. Shimizu, A. Taniguchi, T. Suzuki, W. Wang, Y.W. Chiu, R. Koike, S. Yokoshima, T. Fukuyama, S. Takatori, Y. Sohma, M. Kanai, T. Tomita. Photo-oxygenation by a biocompatible catalyst reduces amyloid-β levels in Alzheimer's disease mice. Brain 144 (2021) 1884-1897. https://dx.doi.org/10.1093/brain/awab058 DOI: https://doi.org/10.1093/brain/awab058
[17] X. Dong. Current Strategies for Brain Drug Delivery. Theranostics 8 (2018) 1481-1493. https://dx.doi.org/10.7150/thno.21254 DOI: https://doi.org/10.7150/thno.21254
[18] Y. Zhu, A. Verkhratsky, H. Chen, C. Yi. Understanding glucose metabolism and insulin action at the blood-brain barrier: Implications for brain health and neurodegenerative diseases. Acta Physiologica 241 (2025) e14283. https://dx.doi.org/10.1111/apha.14283 DOI: https://doi.org/10.1111/apha.14283
[19] S.R.K. Pandian, K.K. Vijayakumar, S. Murugesan, S. Kunjiappan. Liposomes: An emerging carrier for targeting Alzheimer's and Parkinson's diseases. Heliyon 8 (2022) e09575. https://dx.doi.org/10.1016/j.heliyon.2022.e09575 DOI: https://doi.org/10.1016/j.heliyon.2022.e09575
[20] N. Liu, J. Ruan, H. Li, J. Fu. Nanoparticles loaded with natural medicines for the treatment of Alzheimer’s disease. Frontiers in Neuroscience 17 (2023). https://dx.doi.org/10.3389/fnins.2023.1112435 DOI: https://doi.org/10.3389/fnins.2023.1112435
[21] J. Liu, T. Wang, J. Dong, Y. Lu. The blood-brain barriers: novel nanocarriers for central nervous system diseases. Journal of Nanobiotechnology 23 (2025) 146. https://dx.doi.org/10.1186/s12951-025-03247-8 DOI: https://doi.org/10.1186/s12951-025-03247-8
[22] A. Jindal, Mainuddin, A. Kumar, R.K. Ratnesh, J. Singh. Nanotechnology Driven Lipid and Metalloid Based Formulations Targeting Blood-Brain Barrier (3B) for Brain Tumor. Indian Journal of Microbiology 65 (2025) 92-119. https://dx.doi.org/10.1007/s12088-024-01330-6 DOI: https://doi.org/10.1007/s12088-024-01330-6
[23] M.S. Arokiarajan, R. Thirunavukkarasu, J. Joseph, O. Ekaterina, W. Aruni. Advance research in biomedical applications on marine sulfated polysaccharide. International Journal of Biological Macromolecules 194 (2022) 870-881. https://dx.doi.org/10.1016/j.ijbiomac.2021.11.142 DOI: https://doi.org/10.1016/j.ijbiomac.2021.11.142
[24] R.S. Alfinaikh, K.A. Alamry, M.A. Hussein. Sustainable and biocompatible hybrid materials-based sulfated polysaccharides for biomedical applications: a review. RSC Advances 15 (2025) 4708-4767. https://dx.doi.org/10.1039/D4RA07277D DOI: https://doi.org/10.1039/D4RA07277D
[25] Z. Guo, Y. Wei, Y. Zhang, Y. Xu, L. Zheng, B. Zhu, Z. Yao. Carrageenan oligosaccharides: A comprehensive review of preparation, isolation, purification, structure, biological activities and applications. Algal Research 61 (2022) 102593. https://dx.doi.org/10.1016/j.algal.2021.102593 DOI: https://doi.org/10.1016/j.algal.2021.102593
[26] V. Manigandan, J. Nataraj, R. Karthik, T. Manivasagam, R. Saravanan, A.J. Thenmozhi, M.M. Essa, G.J. Guil¬lemin. Low Molecular Weight Sulfated Chitosan: Neuroprotective Effect on Rotenone-Induced in vitro Parkinson’s Disease. Neurotoxicity Research 35 (2019) 505-515. https://dx.doi.org/10.1007/s12640-018-9978-z DOI: https://doi.org/10.1007/s12640-018-9978-z
[27] E.-M. Pacheco-Quito, R. Ruiz-Caro, M.-D. Veiga. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Marine Drugs 18 (2020) 583. https://dx.doi.org/10.3390/md18110583 DOI: https://doi.org/10.3390/md18110583
[28] F. Jiang, Y. Liu, Q. Xiao, F. Chen, H. Weng, J. Chen, Y. Zhang, A. Xiao. Eco-Friendly Extraction, Structure, and Gel Properties of ι-Carrageenan Extracted Using Ca(OH)₂. Marine Drugs 20 (2022) 419. https://dx.doi.org/10.3390/md20070419 DOI: https://doi.org/10.3390/md20070419
[29] S. Udayakumar, A. Girigoswami, K. Girigoswami. Biological Activities of Carrageenan from Red Algae: a Mini Review. Current Pharmacology Reports 10 (2024) 12-26. https://dx.doi.org/10.1007/s40495-023-00348-6 DOI: https://doi.org/10.1007/s40495-023-00348-6
[30] Y. Bai, L. Chen, Y. Chen, X. Chen, Y. Dong, S. Zheng, L. Zhang, W. Li, J. Du, H. Li. A Maitake (Grifola frondosa) polysaccharide ameliorates Alzheimer's disease-like pathology and cognitive impairments by enhancing microglial amyloid-β clearance. RSC Advances 9 (2019) 37127-37135. https://dx.doi.org/10.1039/C9RA08245J DOI: https://doi.org/10.1039/C9RA08245J
[31] O. Makshakova, L. Bogdanova, D. Faizullin, D. Khaibrakhmanova, S. Ziganshina, E. Ermakova, Y. Zuev, I. Sedov. The Ability of Some Polysaccharides to Disaggregate Lysozyme Amyloid Fibrils and Renature the Protein. Pharmaceutics 15 (2023) 624. https://dx.doi.org/10.3390/pharmaceutics15020624 DOI: https://doi.org/10.3390/pharmaceutics15020624
[32] Z. Zhang, X. Wang, Y. Pan, G. Wang, G. Mao. The degraded polysaccharide from Pyropia haitanensis represses amyloid beta peptide-induced neurotoxicity and memory in vivo. International Journal of Biological Macromolecules 146 (2020) 725-729. https://dx.doi.org/10.1016/j.ijbiomac.2019.09.243 DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.243
[33] W.V. Sathyaraj, L. Prabakaran, J. Bhoopathy, S. Dharmalingam, R. Karthikeyan, R. Atchudan. Therapeutic Efficacy of Polymeric Biomaterials in Treating Diabetic Wounds—An Upcoming Wound Healing Technology. Polymers 15 (2023) 1205. https://dx.doi.org/10.3390/polym15051205 DOI: https://doi.org/10.3390/polym15051205
[34] R. Senthil, S.B. Kavukcu, W.S. Vedakumari. Cellulose based biopolymer nanoscaffold: a possible biomedical applications. International Journal of Biological Macromolecules 246 (2023) 125656. https://dx.doi.org/10.1016/j.ijbiomac.2023.125656 DOI: https://doi.org/10.1016/j.ijbiomac.2023.125656
[35] A.W.K. Yeung, E.B. Souto, A. Durazzo, M. Lucarini, E. Novellino, D. Tewari, D. Wang, A.G. Atanasov, A. Santini. Big impact of nanoparticles: analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. Current Research in Biotechnology 2 (2020) 53-63. https://dx.doi.org/10.1016/j.crbiot.2020.04.002 DOI: https://doi.org/10.1016/j.crbiot.2020.04.002
[36] S. Randhawa, T.C. Saini, M. Bathla, R. Bhardwaj, R. Dhiman, A. Acharya. Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy. Beilstein Journal of Nanotechnology 16 (2025) 561-580. https://dx.doi.org/10.3762/bjnano.16.44 DOI: https://doi.org/10.3762/bjnano.16.44
[37] G. Agraharam, A. Girigoswami, K. Girigoswami. Nanoencapsulated Myricetin to Improve Antioxidant Activity and Bioavailability: A Study on Zebrafish Embryos. Chemistry 4 (2022) 1-17. https://dx.doi.org/10.3390/chemistry4010001 DOI: https://doi.org/10.3390/chemistry4010001
[38] A. Bera, D. Mukhopadhyay, K. Goswami, P. Ghosh, R. De, P. De. Fatty acid-based polymeric micelles to ameliorate amyloidogenic disorders. Biomaterials Science 10 (2022) 3466-3479. https://dx.doi.org/10.1039/D2BM00359G DOI: https://doi.org/10.1039/D2BM00359G
[39] K. Harini, S.Y. Alomar, M. Vajagathali, S. Manoharadas, A. Thirumalai, K. Girigoswami, A. Girigoswami. Niosomal Bupropion: Exploring Therapeutic Frontiers through Behavioral Profiling. Pharmaceuticals 17 (2024) 366. https://dx.doi.org/10.3390/ph17030366 DOI: https://doi.org/10.3390/ph17030366
[40] P. Issac, K. Velumani. Rutin Trihydrate Conjugated Zinc Oxide Nanoparticles Targeting Oxidative Stress Pathways for the Protection of Gut Microbiome Dysfunction and Neurodegenerative Diseases. BioNanoScience 14 (2024) 5310-5326. https://dx.doi.org/10.1007/s12668-024-01430-z DOI: https://doi.org/10.1007/s12668-024-01430-z
[41] S. Udayakumar, S.K. Metkar, A. Girigoswami, B. Deepika, G. Janani, L. Kanakaraj, K. Girigoswami. Exploring the amyloid degradation potential of nanoformulated carrageenan—bridging in vitro and in vivo perspectives. International Journal of Biological Macromolecules 279 (2024) 134814. https://dx.doi.org/10.1016/j.ijbiomac.2024.134814 DOI: https://doi.org/10.1016/j.ijbiomac.2024.134814
[42] A. Thirumalai, K. Girigoswami, A.D. Prabhu, P. Durgadevi, V. Kiran, A. Girigoswami. 8-Anilino-1-naphthalenesulfonate-Conjugated Carbon-Coated Ferrite Nanodots for Fluoromagnetic Imaging, Smart Drug Delivery, and Biomolecular Sensing. Pharmaceutics 16 (2024) 1378. https://dx.doi.org/10.3390/pharmaceutics16111378 DOI: https://doi.org/10.3390/pharmaceutics16111378
[43] S.K. Metkar, A. Girigoswami, D.D. Bondage, U.G. Shinde, K. Girigoswami. The potential of lumbrokinase and serratiopeptidase for the degradation of Aβ1-42 peptide—an in vitro and in silico approach. International Journal of Neuroscience (2022) 1-12. https://dx.doi.org/10.1080/00207454.2022.2089137 DOI: https://doi.org/10.1080/00207454.2022.2089137
[44] M. Kanapathipillai, S.H. Ku, K. Girigoswami, C.B. Park. Small stress molecules inhibit aggregation and neurotoxicity of prion peptide 106-126. Biochemical and Biophysical Research Communications 365 (2008) 808-813. https://dx.doi.org/10.1016/j.bbrc.2007.11.074 DOI: https://doi.org/10.1016/j.bbrc.2007.11.074
[45] A. Girigoswami, M. Ramalakshmi, N. Akhtar, S.K. Metkar, K. Girigoswami. ZnO Nanoflower petals mediated amyloid degradation—An in vitro electrokinetic potential approach. Materials Science and Engineering: C 101 (2019) 169-178. https://dx.doi.org/10.1016/j.msec.2019.03.086 DOI: https://doi.org/10.1016/j.msec.2019.03.086
[46] B. Deepika, P. Pallavi, P. Gowtham, A. Girigoswami, K. Girigoswami. Anticancer potential of nanoformulated extract of Passiflora incarnata leaves. Biocatalysis and Agricultural Biotechnology 57 (2024) 103109. https://dx.doi.org/10.1016/j.bcab.2024.103109 DOI: https://doi.org/10.1016/j.bcab.2024.103109
[47] R.B. Badisa, C.S. Batton, E. Mazzio, S.C. Grant, C.B. Goodman. Identification of biochemical and cytotoxic markers in cocaine treated PC12 cells. Scientific Reports 8 (2018) 2710. https://dx.doi.org/10.1038/s41598-018-21182-7 DOI: https://doi.org/10.1038/s41598-018-21182-7
[48] C.P. Bernardes, E. Lopes Pinheiro, I.G. Ferreira, I.S. de Oliveira, N.A.G. dos Santos, S.V. Sampaio, E.C. Arantes, A.C. dos Santos. Fraction of Crotalus durissus collilineatus venom containing crotapotin protects PC12 cells against MPP⁺ toxicity by activating the NGF-signaling pathway. Journal of Venomous Animals and Toxins including Tropical Diseases 30 (2024) e20230056. https://dx.doi.org/10.1590/1678-9199-JVATITD-2023-0056 DOI: https://doi.org/10.1590/1678-9199-jvatitd-2023-0056
[49] P. Gowtham, K. Girigoswami, A.D. Prabhu, P. Pallavi, A. Thirumalai, K. Harini, A. Girigoswami. Hydrogels of Alginate Derivative-Encased Nanodots Featuring Carbon-Coated Manganese Ferrite Cores with Gold Shells to Offer Antiangiogenesis with Multimodal Imaging-Based Theranostics. Advanced Therapeutics 7 (2024) 2400054. https://dx.doi.org/10.1002/adtp.202400054 DOI: https://doi.org/10.1002/adtp.202400054
[50] F. Sabbagh, N.M. Khatir, K. Kiarostami. Synthesis and Characterization of k-Carrageenan/PVA Nanocomposite Hydrogels in Combination with MgZnO Nanoparticles to Evaluate the Catechin Release. Polymers 15 (2023) 272. https://doi.org/10.3390/polym15020272 DOI: https://doi.org/10.3390/polym15020272
[51] W. Sun, M.D.A. Saldaña, Y. Zhao, L. Wu, T. Dong, Y. Jin, J. Zhang. Hydrophobic lappaconitine loaded into iota-carrageenan by one step self-assembly. Carbohydrate Polymers 137 (2016) 231-238. https://doi.org/10.1016/j.carbpol.2015.10.060 DOI: https://doi.org/10.1016/j.carbpol.2015.10.060
[52] B. Frieg, L. Gremer, H. Heise, D. Willbold, H. Gohlke. Binding Modes of Thioflavin T and Congo Red to the Fibril Structure of Amyloid-β(1-42). Chemical Communications 56 (2020). https://doi.org/10.1039/D0CC01161D DOI: https://doi.org/10.1039/D0CC01161D
[53] S.K. Metkar, A. Girigoswami, R. Murugesan, K. Girigoswami. In vitro and in vivo insulin amyloid degradation mediated by Serratiopeptidase. Materials Science and Engineering: C 70 (2017) 728-735. https://doi.org/10.1016/j.msec.2016.09.049 DOI: https://doi.org/10.1016/j.msec.2016.09.049
[54] S. Freire, M.H. de Araujo, W. Al-Soufi, M. Novo. Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils. Dyes and Pigments 110 (2014) 97-105. https://doi.org/10.1016/j.dyepig.2014.05.004 DOI: https://doi.org/10.1016/j.dyepig.2014.05.004
[55] S.K. Metkar, A. Girigoswami, R. Murugesan, K. Girigoswami. Lumbrokinase for degradation and reduction of amyloid fibrils associated with amyloidosis. Journal of Applied Biomedicine 15 (2017) 96-104. https://doi.org/10.1016/j.jab.2017.01.003 DOI: https://doi.org/10.1016/j.jab.2017.01.003
[56] R.-L. Hsu, K.-T. Lee, J.-H. Wang, L.Y.-L. Lee, R.P.-Y. Chen. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. Journal of Agricultural and Food Chemistry 57 (2009) 503-508. https://doi.org/10.1021/jf803072r DOI: https://doi.org/10.1021/jf803072r
[57] D.M. Vadukul, M. Maina, H. Franklin, A. Nardecchia, L.C. Serpell, K.E. Marshall. Internalisation and toxicity of amyloid-β 1-42 are influenced by its conformation and assembly state rather than size. FEBS Letters 594 (2020) 3490-3503. https://doi.org/10.1002/1873-3468.13919 DOI: https://doi.org/10.1002/1873-3468.13919
[58] G. Janani, A. Girigoswami, B. Deepika, S. Udayakumar, D.J. Mercy, K. Girigoswami. Dual Mechanism of Amphiroa anceps: Antiangiogenic and Anticancer Effects in Skin Cancer. Chemistry & Biodiversity (2025) e202500626. https://doi.org/10.1002/cbdv.202500626 DOI: https://doi.org/10.1002/cbdv.202500626
[59] Y. Liu, L. Jiang, X. Li. κ-carrageenan-derived pentasaccharide attenuates Aβ25-35-induced apoptosis in SH-SY5Y cells via suppression of the JNK signaling pathway. Molecular Medicine Reports 15 (2017) 285-290. https://doi.org/10.3892/mmr.2016.6006 DOI: https://doi.org/10.3892/mmr.2016.6006
[60] R.B. Souza, A.F. Frota, J. Silva, C. Alves, A.Z. Neugebauer, S. Pinteus, J.A.G. Rodrigues, E.M.S. Cordeiro, R.R. de Almeida, R. Pedrosa, N.M.B. Benevides. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential. International Journal of Biological Macromolecules 112 (2018) 1248-1256. https://doi.org/10.1016/j.ijbiomac.2018.02.029 DOI: https://doi.org/10.1016/j.ijbiomac.2018.02.029
[61] H. Sun, L. Xu, K. Wang, Y. Li, T. Bai, S. Dong, H. Wu, Z. Yao. κ Carrageenan Oligosaccharides Protect Nerves by Regulating Microglial Autophagy in Alzheimer’s Disease. ACS Chemical Neuroscience 14 (2023) 3540-3550. https://doi.org/10.1021/acschemneuro.3c00460 DOI: https://doi.org/10.1021/acschemneuro.3c00460
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Saranya Udayakumar, Sanjay Kisan Metkar, Koyeli Girigoswami, Agnishwar Girigoswami

This work is licensed under a Creative Commons Attribution 4.0 International License.



