Topical composite hydrogel incorporating human amniotic membrane and spidroin for the treatment of chronic wounds in diabetes mellitus

Original scientific article

Authors

  • Suyarta Efrida Pakpahan Doctoral Program of Biology, School of Life Sciences and Technology, Institut Teknologi Bandung, Ganesha, 10, Bandung, 40132, Jawa Barat, Indonesia https://orcid.org/0000-0002-5596-4224
  • Anggraini Barlian Animal Physiology, Development and Biomedical Sciences Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Ganesha, 10, Bandung, 40132, Jawa Barat, Indonesia and Scientific Imaging Center, Institut Teknologi Bandung, Ganesha, 10, Bandung, 40132, Jawa Barat, Indonesia https://orcid.org/0000-0002-0826-3134
  • Arie Wibowo Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung, 40132, Jawa Barat, Indonesia https://orcid.org/0000-0002-0581-2433
  • Indra Wibowo Animal Physiology, Development and Biomedical Sciences Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Ganesha, 10, Bandung, 40132, Jawa Barat, Indonesia https://orcid.org/0000-0001-7197-2075

DOI:

https://doi.org/10.5599/admet.2822

Keywords:

Argiope appensa, chronic diabetic wound, in vivo, transforming growth factor beta

Abstract

Background and purpose: Traditional diabetic chronic skin wound dressings often lack the bioactivity required to promote regeneration in these complex wounds. The use of human amniotic membrane (hAM) has been identified as a promising natural option for diabetic skin wound regeneration, but hAM is susceptible to rejection and release of growth factors, so cells must be decellularized and supplemented with biomaterials such as spidroin, a hydrogel delivery system. This study aims to analyse and evaluate a composite hydrogel combining hAM and spidroin proteins to enhance the healing of diabetic chronic wounds. Experimental approach: Hydrogels were synthesized and characterized using scanning electron microscope (SEM), attenuated total reflectance Fourier transform infrared spectroscopy, physical tests, gel fraction and swelling ratio. Wound healing studies were performed using alloxan-induced diabetic mice. Full-thickness wounds were created and treated with the hydrogel formulations. Macroscopic progress of wound healing was monitored, and histological analysis was performed to assess reepithelialization, inflammatory response, and collagen deposition. Key results: The functional groups of hAMD components were identified at the characteristic absorption peaks of 1650 cm⁻¹, while spidroin showed a peak at 1530 cm⁻¹. In particular, the 10 % composite (hAMD + spidroin) showed significantly faster wound closure compared to the control group and other treatment groups. Histological findings confirmed that the 10 % composite was able to facilitate cell proliferation, reduce inflammation, enhance epithelial regeneration, angiogenesis, fibroblast formation and regular collagen matrix and decrease transforming growth factor beta in the remodelling phase. Conclusion: Composite (hAMD + spidroin) 10 % showed promising wound healing efficacy in diabetic conditions, indicating its potential as a bioactive wound dressing for chronic diabetes.

Downloads

Download data is not yet available.

References

[1] D. Barski, H. Gerullis, T. Ecke, G. Varga, M. Boros, I. Pintelon, J.P. Timmermans, T. Otto. Human amniotic membrane dressing for the treatment of an infected wound due to an entero-cutaneous fistula: Case report. International Journal of Surgery Case Reports 51 (2018) 11-13. https://doi.org/10.1016/j.ijscr.2018.08.015 DOI: https://doi.org/10.1016/j.ijscr.2018.08.015

[2] L.E. Graves, K.C. Donaghue. Vascular complication in adolescents with diabetes mellitus. Frontiers in Endocrinology 11 (2020) 370. https://doi.org/10.3389/fendo.2020.00370 DOI: https://doi.org/10.3389/fendo.2020.00370

[3] A. Den Dekker, F.M. Davis, S.L. Kunkel, K.A. Gallagher. Targeting epigenetic mechanisms in diabetic wound healing. Translational Research 204 (2019) 39-50. https://doi.org/10.1016/j.trsl.2018.10.001 DOI: https://doi.org/10.1016/j.trsl.2018.10.001

[4] V. Vijayakumar, S.K. Samal, S. Mohanty, S.K. Nayak. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. International Journal of Biological Macromolecules 122 (2019) 137-148. https://doi.org/10.1016/j.ijbiomac.2018.10.120 DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.120

[5] S.J. Phang, B. Arumugam, U.R. Kuppusamy, M.B. Fauzi, M.L. Looi. A review of diabetic wound models—Novel insights into diabetic foot ulcer. Journal of tissue engineering and regenerative medicine 15(12) (2021) 1051-1068. https://doi.org/10.1002/term.3246 DOI: https://doi.org/10.1002/term.3246

[6] N.C. Nowak, D.M. Menichella, R. Miller, A.S. Paller. Cutaneous innervation in impaired diabetic wound healing. Translational Research 236 (2021) 87-108. https://doi.org/10.1016/j.trsl.2021.05.003 DOI: https://doi.org/10.1016/j.trsl.2021.05.003

[7] N. Dasari, A. Jiang, A. Skochdopole, J. Chung, E.M.Reece. J. Vorstenbosch, S. Winocour. Updates in diabetic wound healing, inflammation, and scarring. In Seminars in Plastic Surgery Thieme Medical Publishers 35(03) (2021) 153-158. Inc.https://doi.org/10.1055/s-0041-173146 DOI: https://doi.org/10.1055/s-0041-1731460

[8] S.F. Spampinato, G.I. Caruso, R. De Pasquale, M.A. Sortino, S. Merlo. The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals 13 (2020) 60. https://doi.org/10.3390/ph13040060 DOI: https://doi.org/10.3390/ph13040060

[9] A.P. Sawaya, R.C. Stone, S.R. Brooks, I. Pastar, I. Jozic, K. Hasneen, K. O’Neill, S. Mehdizadeh, C.R. Head, N. Strbo, M.I. Morasso. Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nature communications 11 (2020) 4678. https://doi.org/10.1038/s41467-020-18276-0 DOI: https://doi.org/10.1038/s41467-020-18276-0

[10] R. Rashmi. Bioengineered skin grafts for chronic wounds using 3-dimensional hybrid scaffolds made up of silk fibroin, fibrin composite and amnion (Doctoral dissertation, Sree Chitra Tirunal Institute for Medical Sciences and Technologi/ SCTIMST.Thiruvananthapuram, India). 2020. http://dspace.sctimst.ac.in/jspui/handle/123456789/11140

[11] N. Aji, S.I. Sutiswa. Formulation and characterization of instant powder combination of ginger, bangle, and lemon extract as an antioxidant. Jurnal Farmasi dan Ilmu Kefarmasian Indonesia 10 (2023) 331-346. https://doi.org/10.20473/jfiki.v10i32023.331-346 DOI: https://doi.org/10.20473/jfiki.v10i32023.331-346

[12] C. Wang, M. Guo M, N. Zhang, G. Wang. Effectiveness of honey dressing in the treatment of diabetic foot ulcers: A systematic review and meta-analysis. Complementary therapies in clinical practice 34 (2019) 123-131. https://doi.org/10.1016/j.ctcp.2018.09.004 DOI: https://doi.org/10.1016/j.ctcp.2018.09.004

[13] M. Khamaisi, S. Balanson. Dysregulation of wound healing mechanisms in diabetes and the importance of negative pressure wound therapy (NPWT). Diabetes/Metabolism Research and Reviews 33 (2017) 2929. https://doi.org/10.1002/dmrr.2929 DOI: https://doi.org/10.1002/dmrr.2929

[14] C.P. Grey. Tissue engineering scaffold fabrication and processing techniques to improve cellular infiltration [Doctoral dissertation, Virginia Commonwealth University]. VCU Scholars Compass, Virginia Commonwealth University, Richmond, VA, United States (2014). https://scholarscompass.vcu.edu/etd/3505

[15] B. Bangu, H.J. Siagian, R. Naim, E. Nasus. Modern Dressing Wound Care Mempercepat Proses Penyembuhan Ulkus Kaki pada Pasien Diabetes: A Systematic Review: Modern Wound Care Dress for Acceleration of Foot Ulcus Healing Process in Diabetes Patients: a Systematic. Review. Jurnal Surya Medika (JSM) 7 (2021) 146-155. https://doi.org/10.33084/jsm.v7i1.2650 DOI: https://doi.org/10.33084/jsm.v7i1.2650

[16] E. Herda, D. Puspitasari. Tinjauan peran dan sifat material yang digunakan sebagai scaffold dalam rekayasa jaringan [Review of the role and properties of materials used as scaffolds in tissue engineering]. Jurnal Material Kedokteran Gigi 5 (2018) 56-63. https://doi.org/10.32793/jmkg.v5i2.246 DOI: https://doi.org/10.32793/jmkg.v5i2.246

[17] S. Leal-Marin, T. Kern, N. Hofmann, O. Pogozhykh, C. Framme, M. Börgel, C. Figueiredo, B. Glasmacher, O. Gryshkov. Human Amniotic Membrane: A review on tissue engineering, application, and storage. Journal of Biomedical Materials Research B 109 (2021) 1198-1215. https://doi.org/10.1002/jbm.b.34782 DOI: https://doi.org/10.1002/jbm.b.34782

[18] J. Yu, T.R. Huang, Z.H. Lim, R. Luo, R.R. Pasula, L.D. Liao, S. Lim, C.H. Chen. Production of hollow bacterial cellulose microspheres using microfluidics to form an injectable porous scaffold for wound healing. Advanced Healthcare Materials 5 (2016) 2983-2992. https://doi.org/10.1002/adhm.201600898 DOI: https://doi.org/10.1002/adhm.201600898

[19] S. Khosravimelal, M. Momeni, M. Gholipur, S.C. Kundu, M. Gholipourmalekabadi. Protocols for decellularization of human amniotic membrane. In Methods in Cell Biology. Academic Press 157 (2020) 37-47. https://doi.org/10.1016/bs.mcb.2019.11.004 DOI: https://doi.org/10.1016/bs.mcb.2019.11.004

[20] S.M. Nursatya, A. Barlian, J.L. Hermawan. Fibroin and Spidroin Thin Film to Support the Attachment and Spread of Human Dermal Fibroblast: The Potency of Skin Tissue Engineering. Journal of Mathematical and Fundamental Sciences 53 (2021) 324-341. https://doi.org/10.5614/j.math.fund.sci.2021.53.2.10 DOI: https://doi.org/10.5614/j.math.fund.sci.2021.53.2.10

[21] Y. Harliantika, N. Noval. Formulasi dan Evaluasi Hidrogel Ekstrak Etanol Daun Gaharu (Aquilaria malacensis Lamk.) dengan Kombinasi Basis Karbopol 940 dan HPMC K4M. Journal Pharmasci 6 (2021) 37-46. https://doi.org/10.53342/pharmasci.v6i1.208 DOI: https://doi.org/10.53342/pharmasci.v6i1.208

[22] S. Park, S.I. Kim, J.H. Choi, S.E. Kim, S.H. Choe, Y. Son, T.W. Kang, J.E. Song, G. Khang. Evaluation of Silk Fibroin/Gellan Gum Hydrogels with Controlled Molecular Weight through Silk Fibroin Hydrolysis for Tissue Engineering Application. Molecules 28 (2023) 5222. https://doi.org/10.3390/molecules28135222 DOI: https://doi.org/10.3390/molecules28135222

[23] T. Nofianti, S. Sulistiawati, F. Gustaman. December. Potensi Ekstrak Etanol Daun Anggur (Vitis vinifera L.) dalam Menurunkan Kadar Glukosa Darah yang Diindukasi Aloksan. In Prosiding Seminar Nasional Diseminasi Hasil Penelitian Program Studi S1 Farmasi 2 (2022) 315-323.

[24] A. Mufid. Perbandingan Pengaruh Pemberian Salep Ekstrak Biji Pinang (Areca catechu) Dengan Salep Luka Komersial Terhadap Ekspresi Il-10 dan Jumlah Sel Fibroblas Pada Luka Terbuka Tikus Jantan (Rattus norvegicus). [Undergraduate thesis, Universitas Brawijaya, Malang, Indonesia; in Indonesian]. Universitas Brawijaya Repository 39 (2018). https://repository.ub.ac.id/

[25] M. Pazry, H. Busman, N. Nurcahyani, S. Sutyarso. Potensi ekstrak etanol daun pare (momordica charantia l.) sebagai alternatif obat penyembuh luka pada punggung mencit jantan (mus musculus l.). Jurnal Penelitian Pertanian Terapan 17 (2017) 109-116. https://doi.org/10.25181/jppt.v17i2.289 DOI: https://doi.org/10.25181/jppt.v17i2.289

[26] E. Rohmawaty, A.M. Rosdianto, H.A. Usman, W.A. Saragih, A. Zuhrotun, R. Hendriani, Y.W. Wardhana, S. Ekawardhani, H.L. Wiraswati, N. Agustanti, M.B. Bestari. Antifibrotic effect of the ethyl acetate fraction of ciplukan (Physalis angulata Linn.) in rat liver fibrosis induced by CCI4. Journal of Applied Pharmaceutical Science 11 (2021) 175-182. https://doi.org/10.7324/JAPS.2021.1101217 DOI: https://doi.org/10.7324/JAPS.2021.1101217

[27] S.Y. Mustikalestari, I.H. Wirandoko, I. Komala. Efektifitas Ekstrak Daun Afrika (Vernonia amygdalina) Terhadap Ketebalan Epitelisasi Pada Luka Insisi Mencit. [Undergraduate thesis, in Indonesian]. [Cirebon]: [Fakultas Kedokteran Universitas Swadaya Gunung Jati Cirebon] Tunas Med J Ked & Kes, 6 (2020) 12-18. http://jurnal.unswagati.ac.id/index.php/tumed

[28] D.R. Djatumurti, A. Rafida, A.Y.P. Manalu, T.W. Pangestiningsih. Re-epithelization and density of collagen fibers on wound healing of mice’s skin (Mus musculus) that treated with combination of chitosan membrane and eel (Monopterus albus) mucous. In BIO Web of Conferences 33 (2021) 06005. EDP Sciences. https://doi.org/10.1051/bioconf/20213306005 DOI: https://doi.org/10.1051/bioconf/20213306005

[29] M. Wołuń-Cholewa, K. Szymanowski, M. Andrusiewicz, A. Szczerba, J.B. Warchoł. Trichrome Mallory's stain may indicate differential rates of RNA synthesis in eutopic and ectopic endometrium. 2010. Folia Histochemica et Cytobiologica 48 (2010) 148-152. https://doi.org/10.2478/v10042-008-0106-4 DOI: https://doi.org/10.2478/v10042-008-0106-4

[30] S.W. Lee, H.C. Lien, C.C. Lin, M.C. Wen, C.S. Chang. Low expression of transforming growth factor β in the epithelium of Barrett’s esophagus. Gastroenterology Research 11 (2018) 189. https://doi.org/10.14740/gr1009w DOI: https://doi.org/10.14740/gr1009w

[31] M. Bhattacharjee, J.L.E. Ivirico, H.M. Kan, R. Bordett, R. Pandey, T. Otsuka, L.S. Nair, C.T. Laurencin. Preparation and characterization of amnion hydrogel and its synergistic effect with adipose derived stem cells towards IL1β activated chondrocytes. Scientific reports 10 (2020) 18751. https://doi.org/10.1038/s41598-020-75921-w DOI: https://doi.org/10.1038/s41598-020-75921-w

[32] A. Barlian, H. Judawisastra, A. Ridwan, A.R. Wahyuni, M.E. Lingga. Chondrogenic differentiation of Wharton’s Jelly mesenchymal stem cells on silk spidroin-fibroin mix scaffold supplemented with L- ascorbic acid and platelet rich plasma. Scientific Reports 10 (2020) 19449. https://doi.org/10.1038/s41598-020-76466-8. DOI: https://doi.org/10.1038/s41598-020-76466-8

[33] J.L. Matousek, K.L. Campbell, I. Kakoma, P.F. Solter, D.J. Schaeffer. Evaluation of the effect of pH on in vitro growth of Malassezia pachydermatis. Canadian journal of veterinary research 67 (2003) 56. PMID: 12528830; PMCID: PMC227028

[34] M. Lukić, I. Pantelić, S.D. Savić. Towards optimal pH of the skin and topical formulations: From the current state of the art to tailored products. Cosmetics 8 (2021) 69. https://doi.org/10.3390/cosmetics8030069 DOI: https://doi.org/10.3390/cosmetics8030069

[35] H. Park, X. Guo, J.S. Temenoff, Y. Tabata, A.I. Caplan, F.K. Kasper, A.G. Mikos. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules 10 (2009) 541-546. https://doi.org/10.1021/bm801197m DOI: https://doi.org/10.1021/bm801197m

[36] O.V. Safonova, E.G. Voronkova, E.G. Voronkov, T.V. Bolbukh, N.A. Kocheeva. Forming Conscious Discipline Among Students of Higher Educational Institutions. Propósitos y representaciones 9 (2021) 105. https://doi.org/10.20511/pyr2021.v9nSPE3.1186 DOI: https://doi.org/10.20511/pyr2021.v9nSPE3.1186

[37] A.M. Haugh, J.G. Witt, A. Hauch, M. Darden, G. Parker, W.A. Ellsworth, J.F. Buell. Amnion membrane in diabetic foot wounds: a meta-analysis. Plastic and Reconstructive Surgery–Global Open 5 (2017) 1302. https://doi.org/10.1097/GOX.0000000000001302 DOI: https://doi.org/10.1097/GOX.0000000000001302

[38] T.J. Koob, R. Rennert, N. Zabek, M. Massee, J.J. Lim, J.S. Temenoff, W.W. Li, G. Gurtner. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. International Wound Journal 10 (2013) 493-500. https://doi.org/10.1111/iwj.12140. DOI: https://doi.org/10.1111/iwj.12140

[39] R. Niranjan, S. Muthukumaravel, D. Panneer, S.K. Ojha. Eosinophils restrict diesel exhaust particles-induced cell proliferation of lung epithelial A549 cells via Interleukin-13 mediated mechanisms: implications for tissue remodeling and fibrosis. Combinatorial Chemistry & High Throughput Screening 25 (2022) 1682-1694. https://doi.org/10.2174/1386207325666220105150655 DOI: https://doi.org/10.2174/1386207325666220105150655

[40] Y. Geng, J. Fan, L. Chen, C. Zhang, C. Qu, L. Qian, K. Chen, Z. Meng, Z. Chen, P. Wang. A notch- dependent inflammatory feedback circuit between macrophages and cancer cells regulates pancreatic cancer metastasis. Cancer Research 81 (2021) 64-76. https://doi.org/10.1158/0008- 5472.CAN-20-0256 DOI: https://doi.org/10.1158/0008-5472.CAN-20-0256

[41] L. Rehak, L. Giurato, M. Meloni, A. Panunzi, G.M. Manti, L. Uccioli. The immune-centric revolution in the diabetic foot: monocytes and lymphocytes role in wound healing and tissue regeneration a narrative review. Journal of Clinical Medicine 11 (2022) 889. https://doi.org/10.3390/jcm11030889 DOI: https://doi.org/10.3390/jcm11030889

[42] L. Nussbaum, Y.L. Chen, G.S. Ogg. Role of regulatory T cells in psoriasis pathogenesis and treatment. British Journal of Dermatology 184 (2021) 14-24. https://doi.org/10.1111/bjd.19380 DOI: https://doi.org/10.1111/bjd.19380

[43] J. Bai, Y. Zhang, C. Tang, Y. Hou, X. Ai, X. Chen, Y. Zhang, X. Wang, X. Meng. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomedicine & pharmacotherapy 133 (2021) 110985. https://doi.org/10.1016/j.biopha.2020.110985 DOI: https://doi.org/10.1016/j.biopha.2020.110985

[44] W. Xu, Y. Huang. Regulation of inflammatory cell death by phosphorylation. Frontiers in Immunology 13 (2022) p.851169. https://doi.org/10.3389/fimmu.2022.851169 DOI: https://doi.org/10.3389/fimmu.2022.851169

[45] S.V. Murphy, A. Skardal, L. Song, K. Sutton, R. Haug, D.L. Mack, J. Jackson, S. Soker, A. Atala. Solubilized amnion membrane hyaluronic acid hydrogel accelerates full-thickness wound healing. Stem cells translational medicine 6 (2017) 2020-2032. https://doi.org/10.1002/sctm.17-0053 DOI: https://doi.org/10.1002/sctm.17-0053

[46] U.K. Uppada, B. Kalakonda, P. Koppolu, K. Palakurthy, V. Manchikanti, S. Prasad, S. Samar, L.A. Swapna. Combination of hydroxyapatite, platelet rich fibrin and amnion membrane as a novel therapeutic option in regenerative periapical endodontic surgery: Case series. International journal of surgery case reports 37 (2017) 139-144. https://doi.org/10.1016/j.ijscr.2017.06.009 DOI: https://doi.org/10.1016/j.ijscr.2017.06.009

[47] P. Laurent, V. Jolivel, P. Manicki, L. Chiu, C. Contin-Bordes, M.E. Truchetet, T. Pradeu. Immune- mediated repair: a matter of plasticity. Frontiers in Immunology 8 (2017) 454. https://doi.org/10.3389/fimmu.2017.00454 DOI: https://doi.org/10.3389/fimmu.2017.00454

[48] M. Massee, K. Chinn, J.J. Lim, L. Godwin, C.S. Young, T.J. Koob. Type I and II diabetic adipose- derived stem cells respond in vitro to dehydrated human amnion/chorion membrane allograft treatment by increasing proliferation, migration, and altering cytokine secretion. Advances in wound care 5 (2016) 43-54. https://doi.org/10.1089/wound.2015.0661 DOI: https://doi.org/10.1089/wound.2015.0661

[49] Z. Moore, C. Dowsett, G. Smith, L. Atkin, M. Bain, N.A. Lahmann, G.S. Schultz, T. Swanson, P. Vowden, D. Weir, A. Zmuda. TIME CDST: an updated tool to address the current challenges in wound care. Journal of wound care 28 (2019) 154-161. https://doi.org/10.12968/jowc.2019.28.3.154 DOI: https://doi.org/10.12968/jowc.2019.28.3.154

[50] O.I. Agapova. Silk fibroin and spidroin bioengineering constructions for regenerative medicine and tissue engineering. Sovrem Tehnol v Med 9 (2017): 190–204. https://doi.org/10.17691/stm2017.9.2.24 DOI: https://doi.org/10.17691/stm2017.9.2.24

[51] N. Fatimatuzzahro, P. Pujiastuti, R.S. Alicia. Potensi gel ekstrak cocoon laba-laba Argiope modesta 5% terhadap jumlah sel fibroblas dan kepadatan kolagen pada penyembuhan luka gingiva Potential of 5% Argiope modesta spiders cocoon extract gel on the fibroblasts number and collagen density in gingival wound healing. Jurnal Kedokteran Gigi Universitas Padjadjaran 33 (2021) 233-239. https://doi.org/10.24198/jkg.v33i3.34401 DOI: https://doi.org/10.24198/jkg.v33i3.34401

[52] I.N. Imamah. Pengaruh Pemberian Kolagen Ikan Terhadap Proses Penyembuhan Luka Insisi (Studi Eksperimen Pada Tikue Putih Rattus Norvegicus). Husada Mahakam 4 (2015) 53-62. https://husadamahakam.poltekkes kaltim.ac.id/ojs/index.php/Home/article/view/20

[53] P. Rousselle, F. Braye, G. Dayan. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Advanced Drug Delivery Reviews 146 (2019) 344-365. https://doi.org/10.1016/j.addr.2018.06.019 DOI: https://doi.org/10.1016/j.addr.2018.06.019

[54] A.N. Prawoto, I. Dachlan. The Use of Amniotic Membrane for Wound Healing in Burn Injuries. Jurnal Rekonstruksi & Estetik 7 (2022) 64-71. https://doi.org/10.20473/jre.v7i2.36050 DOI: https://doi.org/10.20473/jre.v7i2.36050

[55] A.R. DCunha, S. Jehangir, G. Rebekah, R.J. Thomas. Human amniotic membrane vs collagen in the treatment of superficial second-degree burns in children. Wounds: a compendium of clinical research and practice 34 (2022) 135-140. https://doi.org/10.25270/wnds/2022.135140 DOI: https://doi.org/10.25270/wnds/2022.135140

[56] S.E. Moreno, I. Enwerem-Lackland, K. Dreaden, M. Massee, T.J. Koob, J.R. Harper. Human amniotic membrane modulates collagen production and deposition in vitro. Scientific Reports 14 (2024) 15998. https://doi.org/10.1038/s41598-024-64364-2 DOI: https://doi.org/10.1038/s41598-024-64364-2

[57] D. Muanjatun, R. Yuniati, F.E. Mundhofir. Pengaruh Ekstrak Daun kelor (Moringa oleifera) pada Penyembuhan Luka. Buletin Anatomi dan Fisiologi 9 (2024) 130-136. https://doi.org/10.14710/baf.9.2.2024.130-136 DOI: https://doi.org/10.14710/baf.9.2.2024.130-136

[58] N. Malaha, D. Sartika, R. Pannyiwi, Z. Zaenal, V. Zakiah. Efektifitas Sediaan Biospray Revolutik Terhadap Ekspresi Sitokin Transforming Growth Factor–Β (TGF–Β) Dalam Proses Penyembuhan Luka. SAINTEKES: Jurnal Sains, Teknologi Dan Kesehatan 2 (2023) 178-185. https://doi.org/10.55681/saintekes.v2i2.72 DOI: https://doi.org/10.55681/saintekes.v2i2.72

[59] KK.I.F. Jaya. Ekspresi Transforming Growth Faktor Beta 1 (Tgfß) Pada Luka Diabetes Melitus Melalui Perawatan Luka Dengan Modern Dressing: Literature Review. Cendekia Medika: Jurnal Stikes Al- Maarif Baturaja 9 (2024) 57-64. https://doi.org/10.52235/cendekiamedika.v9i1.315. DOI: https://doi.org/10.52235/cendekiamedika.v9i1.315

[60] G. Roiu, S. Cavalu, A. Teusdea, D.A. Petricas-Heredea, O. Fratila. Assessment of antibiotic influence on structural modifications of amniotic membrane by FTIR spectroscopy. Materiale Plastice 2 (2019) 191-198. https://doi.org/10.37358/MP.20.2.5365 DOI: https://doi.org/10.37358/MP.20.2.5365

Downloads

Published

24-08-2025

Issue

Section

Pharmaceutics

How to Cite

Topical composite hydrogel incorporating human amniotic membrane and spidroin for the treatment of chronic wounds in diabetes mellitus: Original scientific article. (2025). ADMET and DMPK, 2822. https://doi.org/10.5599/admet.2822

Similar Articles

1-10 of 176

You may also start an advanced similarity search for this article.