Fabrication and optimization of freeze-dried isoniazid-loaded poly-ε-caprolactone nanoparticles

Original scientific article

Authors

  • Eknath Kole Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon MS 425001, India. https://orcid.org/0000-0002-0782-581X
  • Yuvraj Pawara R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, MS 425405, India https://orcid.org/0009-0008-5879-2975
  • Atul Chaudhari Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon MS 425001, India. https://orcid.org/0009-0005-7629-955X
  • Aniruddha Chatterjee Plastics Engineering Department, Plastindia International University, Vapi, Gujarat, India https://orcid.org/0000-0002-9559-2197
  • Jitendra B. Naik Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon MS 425001, India https://orcid.org/0000-0001-8906-7903

DOI:

https://doi.org/10.5599/admet.2774

Keywords:

Lyophilization, nanoprecipitation, microreactor, sustained release, pulmonary tuberculosis

Abstract

Background: Microfluidic nanoprecipitation followed by freeze-drying would yield uniformly sized, stable nanoparticles by preserving their physicochemical property without compromising therapeutic performance. The isoniazid (INH)-loaded poly-ε-caprolactone (PCL) nanoparticles could be developed using a microfluidic technique for the management of tuberculosis. Experimental approach:The INH-loaded nanoparticles were fabricated via a microreactor-assisted nanoprecipitation method and optimization using a design of experiments factorial design approach. The resulting INH-PCL nanoformulation was characterized for particle size, polydispersity index (PDI), zeta potential (surface charge), Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction analysis and field emission scanning electron microscope. Key results:The optimized nanoparticles exhibited an average particle size (248.4 ± 5.372 nm) and high encapsulation efficiency (82.26 ± 4.36 %). Thermal and spectroscopic analyses confirmed the absence of drug-polymer interactions, ensuring formulation integrity; stability studies under accelerated conditions demonstrated negligible changes in particle size, PDI, and zeta potential over the period of 6 months, indicating robust colloidal stability. A scanning electron microscopy study revealed rod-shaped nanoparticles with smooth surfaces. Lyophilization (freeze-drying) enhanced long-term stability, yielding a readily re-dispersible powder (reconstitution index 1.066). Following diffusion-controlled kinetics, in vitro drug release studies in phosphate buffer saline (pH 7.4) showed sustained drug release (92.45 % cumulative release over 48 h). Conclusion: Our results confirm that the INH-loaded PCL nanoformulation combines excellent stability, high drug-loading capacity, and sustained release, key attributes of effective tuberculosis therapy.

Downloads

Download data is not yet available.

References

[1] A.Z. Bahlool, B. Cavanagh, A.O. Sullivan, R. MacLoughlin, J. Keane, M.P.O. Sullivan, S.A. Cryan. Microfluidics produced ATRA-loaded PLGA NPs reduced tuberculosis burden in alveolar epithelial cells and enabled high delivered dose under simulated human breathing pattern in 3D printed head models. European Journal of Pharmaceutical Sciences 196 (2024) 106734. https://doi.org/10.1016/j.ejps.2024.106734 DOI: https://doi.org/10.1016/j.ejps.2024.106734

[2] K.M.S.R. Sefat, M. Kumar, S. Kehl, R. Kulkarni, A. Leekha, M.M. Paniagua, D.F. Ackart, N. Jones, C. Spencer, B.K. Podell, H. Ouellet, N. Varadarajan. An intranasal nanoparticle vaccine elicits protective immunity against Mycobacterium tuberculosis. Vaccine 42(22) (2024) 125909. https://doi.org/10.1016/j.vaccine.2024.04.055 DOI: https://doi.org/10.1016/j.vaccine.2024.04.055

[3] Global tuberculosis report 2024. Geneva: World Health Organization, 2024. ISBN 978-92-4-010153-1

[4] L. Luies, I. du Preez. The Echo of Pulmonary Tuberculosis: Mechanisms of Clinical Symptoms and Other Disease-Induced Systemic Complications. Clinical Microbiology Reviews 33(4) (2020) 10-1128. https://doi.org/10.1128/CMR.00036-20 DOI: https://doi.org/10.1128/CMR.00036-20

[5] C.B.E. Chee, R. Reves, Y. Zhang, R. Belknap. Latent tuberculosis infection: Opportunities and challenges. Respirology 23 (2018) 893-900. https://doi.org/10.1111/resp.13346 DOI: https://doi.org/10.1111/resp.13346

[6] A. Mobed, V. Alivirdiloo, S. Gholami, A. Moshari, A. Mousavizade, R. Naderian, F. Ghazi. Nano-Medicine for Treatment of Tuberculosis, Promising Approaches Against Antimicrobial Resistance. Current Microbiology 81 (2024) 326. https://doi.org/10.1007/s00284-024-03853-z DOI: https://doi.org/10.1007/s00284-024-03853-z

[7] S.M. Patil, A.M. Diorio, P. Kommarajula, N.K. Kunda. A quality-by-design strategic approach for the development of bedaquiline-pretomanid nanoparticles as inhalable dry powders for TB treatment. International Journal of Pharmaceutics 653 (2024) 123920. https://doi.org/10.1016/j.ijpharm.2024.123920 DOI: https://doi.org/10.1016/j.ijpharm.2024.123920

[8] G. Fekadu, F. Bekele, K. Bekele, T. Girma, G. Mosisa, M. Gebre, T. Alemu, T. Tekle, B. Gamachu, A. Diriba. Adherence to Anti-Tuberculosis Treatment Among Pediatric Patients at Nekemte Specialized Hospital, Western Ethiopia. Patient Preference and Adherence 14 (2020) 1259-1265. https://doi.org/10.2147/ppa.s258292 DOI: https://doi.org/10.2147/PPA.S258292

[9] S. Bea, H. Lee, J.H. Kim, S.H. Jang, H. Son, J.-W. Kwon, J.-Y. Shin. Adherence and Associated Factors of Treatment Regimen in Drug-Susceptible Tuberculosis Patients. Frontiers in Pharmacology 12 (2021) 625078. https://doi.org/10.3389/fphar.2021.625078 DOI: https://doi.org/10.3389/fphar.2021.625078

[10] U.A. Boelsterli, K.K. Lee. Mechanisms of isoniazid‐induced idiosyncratic liver injury: Emerging role of mitochondrial stress. Journal of Gastroenterology and Hepatology 29 (2014) 678-687. https://doi.org/10.1111/jgh.12516 DOI: https://doi.org/10.1111/jgh.12516

[11] T. Schaberg, K. Rebhan, H. Lode. Risk factors for side-effects of isoniazid, rifampin and pyrazinamide in patients hospitalized for pulmonary tuberculosis. European Respiratory Journal 9 (1996) 2026-2030. https://doi.org/10.1080/07373937.2024.2437691 DOI: https://doi.org/10.1183/09031936.96.09102026

[12] K. Jadhav, E. Kole, A. Abhang, S. Rojekar, V. Sugandhi, R.K. Verma, A. Mujumdar, J. Naik. Revealing the potential of nano spray drying for effective delivery of pharmaceuticals and biologicals. Drying Technology (2024) 90-113. https://doi.org/10.1080/07373937.2024.2437691 DOI: https://doi.org/10.1080/07373937.2024.2437691

[13] S.R. Pardeshi, E.B. Kole, H.S. Kapare, S.M. Chandankar, P.J. Shinde, G.S. Boisa, S.S. Salgaonkar, P.S. Giram, M.P. More, P. Kolimi, D. Nyavanandi, S. Dyawanapelly, V. Junnuthula. Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Pharmaceutics 14 (2022) 2632. https://doi.org/10.3390/pharmaceutics14122632 DOI: https://doi.org/10.3390/pharmaceutics14122632

[14] E. Kole, K. Jadhav, N. Shirsath, P. Dudhe, R.K. Verma, A. Chatterjee, J. Naik. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. Journal of Drug Delivery Science and Technology 81 (2023) 104261. https://doi.org/10.1016/j.jddst.2023.104261 DOI: https://doi.org/10.1016/j.jddst.2023.104261

[15] K. Jadhav, E. Kole, R. Singh, S.K. Rout, R.K. Verma, A. Chatterjee, A. Mujumdar, J. Naik. A critical review on developments in drying technologies for enhanced stability and bioavailability of pharmaceuticals. Drying Technology 42 (2024) 1415-1441. https://doi.org/10.1080/07373937.2024.2357181 DOI: https://doi.org/10.1080/07373937.2024.2357181

[16] E. Kole, K. Jadhav, Y. Sonar, M. Kapse, S.A. Patil, A. Kumar. Advances in spray drying technology for anti-tubercular formulation development : A comprehensive review. Drying Technology 43(1-2) (2025) 53-89. https://doi.org/10.1080/07373937.2024.2437690 DOI: https://doi.org/10.1080/07373937.2024.2437690

[17] V. Jadhav, A. Roy, K. Kaur, A. Roy, K. Sharma, R. Verma, S. Rustagi, S. Malik. Current advancements in functional nanomaterials for drug delivery systems. Nano-Structures & Nano-Objects 38 (2024) 101177. https://doi.org/10.1016/j.nanoso.2024.101177 DOI: https://doi.org/10.1016/j.nanoso.2024.101177

[18] G. Wyszogrodzka-Gaweł, P. Dorożyński, S. Giovagnoli, W. Strzempek, E. Pesta, W.P. Węglarz, B. Gil, E. Menaszek, P. Kulinowski. An Inhalable Theranostic System for Local Tuberculosis Treatment Containing an Isoniazid Loaded Metal Organic Framework Fe-MIL-101-NH2—From Raw MOF to Drug Delivery System. Pharmaceutics 11 (2019) 687. https://doi.org/10.3390/pharmaceutics11120687 DOI: https://doi.org/10.3390/pharmaceutics11120687

[19] L.C. Luciani-Giacobbe, A.M. Lorenzutti, N.J. Litterio, M.V. Ramírez-Rigo, M.E. Olivera. Anti-tuberculosis site-specific oral delivery system that enhances rifampicin bioavailability in a fixed-dose combination with isoniazid. Drug Delivery and Translational Research 11 (2021) 894-908. https://doi.org/10.1007/s13346-020-00847-9 DOI: https://doi.org/10.1007/s13346-020-00847-9

[20] J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M. del P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.-S. Shin. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology 16 (2018) 71. https://doi.org/10.1186/s12951-018-0392-8 DOI: https://doi.org/10.1186/s12951-018-0392-8

[21] M. Kumar, T. Virmani, G. Kumar, R. Deshmukh, A. Sharma, S. Duarte, P. Brandão, P. Fonte. Nanocarriers in Tuberculosis Treatment: Challenges and Delivery Strategies. Pharmaceuticals 16 (2023) 1360. https://doi.org/10.3390/ph16101360 DOI: https://doi.org/10.3390/ph16101360

[22] B. Begines, T. Ortiz, M. Pérez-Aranda, G. Martínez, M. Merinero, F. Argüelles-Arias, A. Alcudia. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials 10 (2020) 1403. https://doi.org/10.3390/nano10071403 DOI: https://doi.org/10.3390/nano10071403

[23] L. Eltaib. Polymeric Nanoparticles in Targeted Drug Delivery: Unveiling the Impact of Polymer Characterization and Fabrication. Polymers 17 (2025) 833. https://doi.org/10.3390/polym17070833 DOI: https://doi.org/10.3390/polym17070833

[24] R. Rajput, J. Narkhede, J.B. Naik. Nanogels as nanocarriers for drug delivery: A review. ADMET and DMPK 8 (2020) 1-15. https://doi.org/10.5599/admet.724 DOI: https://doi.org/10.5599/admet.724

[25] O. Opriș, C. Mormile, I. Lung, A. Stegarescu, M.-L. Soran, A. Soran. An Overview of Biopolymers for Drug Delivery Applications. Applied Sciences 14 (2024) 1383. https://doi.org/10.3390/app14041383 DOI: https://doi.org/10.3390/app14041383

[26] T.-H. Tsung, Y.-C. Tsai, H.-P. Lee, Y.-H. Chen, D.-W. Lu. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. International Journal of Molecular Sciences 24 (2023) 12976. https://doi.org/10.3390/ijms241612976 DOI: https://doi.org/10.3390/ijms241612976

[27] E. Kole, K. Jadhav, Z. Khan, R.K. Verma, A. Chatterjee, A. Mujumdar, J. Naik. Engineered vildagliptin-loaded polymeric nanoparticles via microfluidic and spray drying for enhanced antidiabetic activity. Future Journal of Pharmaceutical Sciences 10 (2024) 156. https://doi.org/10.1186/s43094-024-00736-9 DOI: https://doi.org/10.1186/s43094-024-00736-9

[28] A. Patil, S. Pardeshi, M. Kapase, P. Patil, M. More, S. Dhole, E. Kole, P. Deshmukh, A. Gholap, A. Mujumdar, J. Naik. Continuous preparation of sustained release vildagliptin nanoparticles using tubular microreactor approach. Drying Technology 42(4) (2024) 661-673. https://doi.org/10.1080/07373937.2023.2298778

[29] S. Rohilla, R. Awasthi, A. Rohilla, S.K. Singh, D.K. Chellappan, K. Dua, H. Dureja. Optimizing gefitinib nanoliposomes by Box-Behnken design and coating with chitosan: A sequential approach for enhanced drug delivery. ADMET and DMPK 12(4) (2024) 657-677. https://doi.org/10.5599/admet.2366 DOI: https://doi.org/10.5599/admet.2366

[30] A.A. Abdelbary, M.H.H. AbouGhaly. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: Application of Box-Behnken design, in-vitro evaluation and in-vivo skin deposition study. International Journal of Pharmaceutics 485 (2015) 235-243. https://doi.org/10.1016/j.ijpharm.2015.03.020 DOI: https://doi.org/10.1016/j.ijpharm.2015.03.020

[31] Kole, E., Sonar, Y., Sarode, R. J., Chaudhari, A., & Naik, J. (2025). Development and characterisation of lyophilised ethambutol-loaded polymeric nanoparticles. Journal of Applied Pharmaceutical Research 13(2) 172-180. https://doi.org/10.69857/joapr.v13i2.1093 DOI: https://doi.org/10.69857/joapr.v13i2.1093

[32] J.B. Naik, R.K. Deshmukh. Study of Formulation Variables Influencing Polymeric Microparticles by Experimental Design. ADMET & DMPK 2(1) (2014) 63-70. https://doi.org/10.5599/admet.2.1.29 DOI: https://doi.org/10.5599/admet.2.1.29

[33] P. Guo, B.A. Buttaro, H.Y. Xue, N.T. Tran, H.L. Wong. Lipid-polymer hybrid nanoparticles carrying linezolid improve treatment of methicillin-resistant Staphylococcus aureus (MRSA) harbored inside bone cells and biofilms. European Journal of Pharmaceutics and Biopharmaceutics 151 (2020) 189-198. https://doi.org/10.1016/j.ejpb.2020.04.010 DOI: https://doi.org/10.1016/j.ejpb.2020.04.010

[34] L. Patil, U. Verma, R. Rajput, P. Patil, A. Chaterjee, J.B. Naik. Development of olanzapine solid dispersion by spray drying technique using screening design for solubility enhancement. ADMET and DMPK 11 (2023) 615-627. https://doi.org/10.5599/admet.1998 DOI: https://doi.org/10.5599/admet.1998

[35] G. Khairnar, V. Mokale, R. Khairnar, A. Mujumdar, J. Naik. Production of antihyerglycemic and antihypertensive drug loaded sustained release nanoparticles using spray drying technique: Optimization by Placket Burman Design. Drying Technology 40 (2022) 626-637. https://doi.org/10.1080/07373937.2020.1825292 DOI: https://doi.org/10.1080/07373937.2020.1825292

[36] A. Patil, S. Pardeshi, M. Kapase, P. Patil, M. More, S. Dhole, E. Kole, P. Deshmukh, A. Gholap, A. Mujumdar, J. Naik. Continuous preparation of sustained release vildagliptin nanoparticles using tubular microreactor approach. Drying Technology 42 (2024) 661-673. https://doi.org/10.1080/07373937.2023.2298778 DOI: https://doi.org/10.1080/07373937.2023.2298778

[37] B. Subaşı-Zarbaliyev, G. Kutlu, F. Törnük. Polyvinyl alcohol nanoparticles loaded with propolis extract: Fabrication, characterization and antimicrobial activity. ADMET and DMPK 11(4) (2023) 587-600. https://doi.org/10.5599/admet.1740 DOI: https://doi.org/10.5599/admet.1740

[38] S. Mandpe, E. Kole, V. Parate, A. Chatterjee, A. Mujumdar, J. Naik. Design, development, and evaluation of spray dried flurbiprofen loaded sustained release polymeric nanoparticles using QBD approach to manage inflammation. Drying Technology 41 (15) (2023) 1-13. https://doi.org/10.1080/07373937.2023.2251572 DOI: https://doi.org/10.1080/07373937.2023.2251572

[39] S. Mandpe, E. Kole, V. Parate, A. Chatterjee, A. Mujumdar, J. Naik. Development, QbD-based optimisation, in-vivo pharmacokinetics, and ex-vivo evaluation of Eudragit ® RS 100 loaded flurbiprofen nanoparticles for oral drug delivery. Journal of Microencapsulation 42(1) (2024) 1-13. https://doi.org/10.1080/02652048.2024.2427294 DOI: https://doi.org/10.1080/02652048.2024.2427294

[40] K. Jadhav, A. Jhilta, R. Singh, E. Ray, N. Sharma, R. Shukla, A.K. Singh, R.K. Verma. Clofazimine nanoclusters show high efficacy in experimental TB with amelioration in paradoxical lung inflammation. Biomaterials Advances 154 (2023) 213594. https://doi.org/10.1016/j.bioadv.2023.213594 DOI: https://doi.org/10.1016/j.bioadv.2023.213594

[41] Y. Jiang, Y. Zhou, C.Y. Zhang, T. Fang. Co-delivery of paclitaxel and doxorubicin by ph-responsive prodrug micelles for cancer therapy. International Journal of Nanomedicine 15 (2020) 3319-3331. https://doi.org/10.2147/ijn.s249144 DOI: https://doi.org/10.2147/IJN.S249144

[42] U. Verma, A. Mujumdar, J. Naik. Preparation of Efavirenz resinate by spray drying using response surface methodology and its physicochemical characterization for taste masking. Drying Technology 38 (2020) 793-805. https://doi.org/10.1080/07373937.2019.1590845 DOI: https://doi.org/10.1080/07373937.2019.1590845

[43] P. Wagh, A. Mujumdar, J.B. Naik. Preparation and characterization of ketorolac tromethamine-loaded ethyl cellulose micro-/nanospheres using different techniques. Particulate Science and Technology 37 (2019) 347-357. https://doi.org/10.1080/02726351.2017.1383330 DOI: https://doi.org/10.1080/02726351.2017.1383330

[44] Y. Zhang, L. Tang, L. Sun, J. Bao, C. Song, L. Huang, K. Liu, Y. Tian, G. Tian, Z. Li, H. Sun, L. Mei. A novel paclitaxel-loaded poly(ε-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Acta Biomaterialia 6 (2010) 2045-2052. https://doi.org/10.1016/j.actbio.2009.11.035 DOI: https://doi.org/10.1016/j.actbio.2009.11.035

[45] S.Y. Lipaikin, A.S. Dorokhin, G.A. Ryltseva, A. V. Oberenko, A. V. Shabanov, T.G. Volova, E.I. Shishatskaya. Investigation of drug release kinetics from biodegradable polyhydroxyalkanoate microparticles. Reaction Kinetics, Mechanisms and Catalysis (2025). https://doi.org/10.1007/s11144-025-02852-w DOI: https://doi.org/10.1007/s11144-025-02852-w

[46] J.M. da S. Leite, L.M. de Santana, D. Nadvorny, B.O. de Abreu, J. de S. Rebouças, F.R. Formiga, M.F. de L.R. Soares, J.L. Soares-Sobrinho. Nanoparticle design for hydrophilic drugs: Isoniazid biopolymeric nanostructure. Journal of Drug Delivery Science and Technology 87 (2023) 104754 https://doi.org/10.1016/j.jddst.2023.104754 DOI: https://doi.org/10.1016/j.jddst.2023.104754

[47] B. Mollaghadimi. Preparation and characterisation of polycaprolactone-fibroin nanofibrous scaffolds containing allicin. IET Nanobiotechnology 16 (2022) 239-249. https://doi.org/10.1049/nbt2.12092 DOI: https://doi.org/10.1049/nbt2.12092

[48] X. Lin, Y. Shi, S. Yu, S. Li, W. Li, M. Li, S. Chen, Y. Wang, M. Cong. Preparation of Poloxamer188-b-PCL and Study on in vitro Radioprotection Activity of Curcumin-Loaded Nanoparticles. Frontiers in Chemistry 8 (2020) 212. https://doi.org/10.3389/fchem.2020.00212 DOI: https://doi.org/10.3389/fchem.2020.00212

[49] T. Khuroo, E.M. Mohamed, S. Dharani, C. Kayalar, T. Ozkan, M.A. Kuttolamadom, Z. Rahman, M.A. Khan. Very-Rapidly Dissolving Printlets of Isoniazid Manufactured by SLS 3D Printing: In Vitro and In Vivo Characterization. Molecular Pharmaceutics 19 (2022) 2937-2949. https://doi.org/10.1021/acs.molpharmaceut.2c00306 DOI: https://doi.org/10.1021/acs.molpharmaceut.2c00306

Downloads

Published

08-07-2025

Issue

Section

Pharmaceutics

How to Cite

Fabrication and optimization of freeze-dried isoniazid-loaded poly-ε-caprolactone nanoparticles: Original scientific article. (2025). ADMET and DMPK, 13(4), 2774. https://doi.org/10.5599/admet.2774

Similar Articles

11-20 of 93

You may also start an advanced similarity search for this article.