Enhancing encapsulation of filarial antigen Brugia malayi thioredoxin in nano-liposomes: The role of lecithin composition

Authors

  • Malathi Balasubramaniyan Department Centre for Nanoscience and Technology, Anna University, Guindy, Chennai 600025, Tamilnadu, India and Department of Biotechnology, Vignan's Foundation for Science, Technology & Research University, Vadlamudi 522213, Andhra Pradesh, India https://orcid.org/0000-0001-5155-8328
  • Vimalraj Vinayagam Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamilnadu, India 5Centre for Biotechnology, Anna University, Guindy, Chennai 600025, Tamilnadu, India https://orcid.org/0000-0001-9926-4708
  • Moni Philip Jacob Kizhakedathil Department of Biotechnology, Bannari Amman institute of technology, Sathyamangalam, 638401, Tamilnadu, India https://orcid.org/0000-0003-0803-0047
  • Kaliraj Perumal Centre for Biotechnology, Anna University, Guindy, Chennai 600025, Tamilnadu, India https://orcid.org/0009-0009-1685-3343

DOI:

https://doi.org/10.5599/admet.2089

Keywords:

liposome, lymphatic filariasis, thioredoxin, egg phosphatidylcholine, cholesterol
Graphical Abstract

Abstract

Background and purpose: Lymphatic filariasis is a debilitating infectious disease prevalent in endemic areas, necessitating the development of an effective vaccine for eradication. Although recombinant vaccine candidates have been deemed safe, they often fail to provide sufficient protection, which can be overcome by encapsulating them in nano-liposomes. In this study, we have optimised the liposomal composition for enhanced stability and encapsulation of filarial antigen Brugia malayi thioredoxin (Bm-TRX). Experimental approach: Nano-liposomes were prepared using egg phosphatidylcholine (EPC) and cholesterol via thin-film hydration, followed by sonication and characterizing. Encapsulation efficiency was optimised using different weight ratios of EPC to cholesterol (8:2, 7:3, and 6:4) and total lipid (EPC+Cholesterol) concentration to antigen Bm-TRX (10:1, 10:2, and 10:3) followed by release kinetics study. Key results: Optimised parameters yielded spherical liposomes measuring 209 nm in diameter with narrow polydispersity. Our findings demonstrated the highest encapsulation efficiency of 70.685 % and stability of 10 hours for an EPC to cholesterol weight ratio of 7:3. The in silico study proved the antigenic nature of TRX. Conclusion: The liposomal formulations loaded with TRX, as optimized in this study, hold promise for improving antigen efficiency by enhancing stability, bioavailability, and prophylactic effects by acting as immune potentiators.

Downloads

Download data is not yet available.

References

M.D. Stein, J.H. Samet, P.G. O'Connor. The linkage of primary care services with substance abuse treatment: new opportunities for academic generalists. Journal of General Internal Medicine 8 (1993) 106-107. https://doi.org/10.1007/BF02599995

Monitoring and epidemiological assessment of mass drug administration in a global programme to eliminate lymphatic filariasis: a manual for national elimination programmes.World Health Organization. WHO/HTM/NTD/PCT/2011.4.(2011). https://iris.who.int/bitstream/handle/10665/44580/9789241501484_eng.pdf?sequence=1

J.N. Hays. The Burdens of Disease: Epidemics and Human Response in Western History. Rutgers University Press; 2009. https://edisciplinas.usp.br/pluginfile.php/4205697/mod_resource/content/1/J.N.%20Hays-The%20Burdens%20of%20Disease_%20Epidemics%20and%20Human%20Response%20in%20Western%20History%2C%20Revised%20Edition%20%282010%29.pdf

A.K. Rana, S. Misra-Bhattacharya. Current drug targets for helminthic diseases. Parasitol Research 112 (2013) 1819-1831. https://pubmed.ncbi.nlm.nih.gov/23529336/

Preventive Chemotherapy in Human Helminthiasis: Coordinated Use of Anthelminthic Drugs in Control Interventions : a Manual for Health Professionals and Programme Managers. World Health Organization (2006). https://play.google.com/store/books/details?id=5qJvG5Eek1cC

K. Kunchithapautham, B. Padmavathi, R.B. Narayanan, P. Kaliraj, A.L. Scott. Thioredoxin from Brugiamalayi: defining a 16-kilodalton class of thioredoxins from nematodes. Infection and Immunity 71 (2003) 4119 - 4126. http://dx.doi.org/10.1128/IAI.71.7.4119-4126.2003

J. Madhumathi, P.R. Prince, G. Anugraha, P. Kiran, D.N. Rao, M.V.R. Reddy. Identification and characterization of nematode specific protective epitopes of Brugiamalayi TRX towards development of synthetic vaccine construct for lymphatic filariasis. Vaccine 28 (2010) 5038-5048. http://dx.doi.org/10.1016/j.vaccine.2010.05.012

S. Ramachandran, M.P. Kumar, R.M.V. Rami, H.B. Chinnaiah, T. Nutman, P. Kaliraj. The larval specific lymphatic filarial ALT-2: induction of protection using protein or DNA vaccination. Medical Microbiology and Immunology 48 (2004) 945-955. http://dx.doi.org/10.1111/j.1348-0421.2004.tb03624.x

S.B. Anand, M. Gnanasekar, M. Thangadurai, P.R. Prabhu, P. Kaliraj, K. Ramaswamy. Immune response studies with Wuchereriabancroftivespid allergen homologue (WbVAH) in human lymphatic filariasis. Parasitology Research 101 (2007) 981-988. http://dx.doi.org/10.1007/s00436-007-0571-2

N. Latif, B.K. Bachhawat. Liposomes in immunology. The Journal of Biosciences 6 (1984) 491-502. http://dx.doi.org/10.1007/BF02703901

R. L. Richards, M. D. Hayre, W. T. Hockmeyer, C. R. Alving. Liposomes, lipid A, and aluminum hydroxide enhance the immune response to a synthetic malaria sporozoite antigen. Infection Immunology 56(3) (1988) 682-6. https://doi.org/10.1128/iai.56.3.682-686.1988

A. Sharma, U.S. Sharma. Liposomes in drug delivery: Progress and limitations. The International Journal of Pharmaceutics 154 (1997) 123-140. http://dx.doi.org/10.1016/S0378-5173(97)00135-X

F. Gunstone. Vegetable Oils in Food Technology: Composition, Properties and Uses. John Wiley & Sons. 2011. https://play.google.com/store/books/details?id=lnk2tdo8_P4C

S. Ogawa, E.A. Decker, D.J. McClements. Influence of environmental conditions on the stability of oil in water emulsions containing droplets stabilized by lecithin-chitosan membranes. The Journal of Agricultural and Food Chemistry 51 (2003) 5522-5527. http://dx.doi.org/10.1021/jf026103d

M.E. Lanio, M.C. Luzardo, C. Alvarez, Y. Martínez, L. Calderón, M.E. Alonso. Humoral immune response against epidermal growth factor encapsulated in dehydration rehydration vesicles of different phospholipid composition. Journal of Liposome Research 18 (2008) 1-19. http://dx.doi.org/10.1080/08982100801893887

E.M. Agger, I. Rosenkrands, J. Hansen, K. Brahimi, B.S. Vandahl, C. Aagaard. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLOS One 3 (2008) e3116. http://dx.doi.org/10.1371/journal.pone.0003116

L. Krishnan, G.D. Sprott. Archaeosome adjuvants: immunological capabilities and mechanism(s) of action. Vaccine 26 (2008) 2043-2055. http://dx.doi.org/10.1016/j.vaccine.2008.02.026

L. Calderón, E. Facenda, L. Machado, K. Uyema,D. Rodríguez, E. Gomez. Modulation of the specific allergic response by mite allergens encapsulated into liposomes. Vaccine 24 (2006) S38-S39. http://dx.doi.org/10.1016/j.vaccine.2005.01.112

S. Raman, R. Vernon, J. Thompson, M. Tyka, R. Sadreyev, J. Pei. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77 (2009) 89-99. http://dx.doi.org/10.1002/prot.22540

D.W. Mount. Using the Basic Local Alignment Search Tool (BLAST). Cold spring harbor Protocols 7 (2007) 17. http://dx.doi.org/10.1101/pdb.top17

S. Saha, G.P.S. Raghava. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65 (2006) 40-48. http://dx.doi.org/10.1002/prot.21078

I.A. Doytchinova, D.R. Flower. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8 (2007) 4. http://dx.doi.org/10.1186/1471-2105-8-4

I. Dimitrov, L. Naneva, I. Doytchinova, I. BangovI. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics 30 (2014) 846-851. http://dx.doi.org/10.1093/bioinformatics/btt619

B.M. da Silva, Y. Myung, D.B. Ascher, D.E.V. Pires. epitope3D: a machine learning method for conformational B-cell epitope prediction. Briefings in Bioinformatics 23 (2022) 423. http://dx.doi.org/10.1093/bib/bbab423

M. Nielsen, C. Lundegaard, P. Worning, S.L. Lauemøller, K. Lamberth, S. Buus. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Science 12 (2003) 1007-1017. http://dx.doi.org/10.1110/ps.0239403

K. K. Jensen, M. Andreatta, P. Marcatili,S. Buus, J.A. Greenbaum, Z. Yan. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154 (2018) 394-406. http://dx.doi.org/10.1111/imm.12889

N. Rapin, O. Lund, M. Bernaschi, F. Castiglione. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One 5 (2010) e9862. http://dx.doi.org/10.1371/journal.pone.0009862

E.D. Korn. Methods in Membrane Biology: Volume 1. Springer Science & Business Media (2013). https://link.springer.com/book/10.1007/978-1-4615-7422-4.

M.X. Chen, B.K. Li, D.K. Yin, J. Liang, S.S. Li, D.Y. Peng. Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery. Carbohydrate Polymers 111 (2014) 298-304. http://dx.doi.org/10.1016/j.carbpol.2014.04.038

C. Puglia, A. Offerta, L. Rizza, G. Zingale, F. Bonina, S. Ronsisvalle. Optimization of curcumin loaded lipid nanoparticles formulated using high shear homogenization (HSH) and ultrasonication (US) methods. Journal of Nanoscience and Nanotechnology 13 (2013) 6888-6893. http://dx.doi.org/10.1166/jnn.2013.7766

L. Coderch, J. Fonollosa,M. De Pera, J. Estelrich, A. De La Maza, J.L. Parra. Influence of cholesterol on liposome fluidity by EPR. Relationship with percutaneous absorption. Journal of Controlled Release 68 (2000) 85-95. http://dx.doi.org/10.1016/s0168-3659(00)00240-6

D.A. Tyrrell, T.D. Heath, C.M. Colley, B.E. Ryman. New aspects of liposomes. Biochimica et Biophysica Acta 457 (1976) 259 -302. http://dx.doi.org/10.1016/0304-4157(76)90002-2

R Tantipolphan, T. Rades, N.J. Medlicott. Swelling lecithin: cholesterol implants for the controlled release of proteins. Journal of Liposome Research 19 (2009) 37 - 48. http://dx.doi.org/10.1080/08982100802636434

M.L. Dunkley, S. Rajyaguru, A. McCue, A.W. Cripps, J.M. Kyd. Pseudomonas aeruginosa-specific IgG1 and IgG2 subclasses in enhancement of pulmonary clearance following passive immunisation in the rat. FEMS Immunology and Medical Microbiology 39 (2003) 37-44. http://dx.doi.org/10.1016/S0928-8244(03)00176-7

S. Aminnezhad, A. Abdi-Ali, T. Ghazanfari, M. Bandehpour, M. Zarrabi. Immunoinformatics design of multivalent chimeric vaccine for modulation of the immune system in Pseudomonas aeruginosa infection. Infection, Genetics and Evolution 85 (2020) 104462. http://dx.doi.org/10.1016/j.meegid.2020.104462

Downloads

Published

30-11-2023 — Updated on 30-11-2023

How to Cite

Balasubramaniyan, M., Vinayagam, V., Jacob Kizhakedathil, M. P., & Perumal, K. (2023). Enhancing encapsulation of filarial antigen Brugia malayi thioredoxin in nano-liposomes: The role of lecithin composition. ADMET and DMPK, 12(2), 379–389. https://doi.org/10.5599/admet.2089

Issue

Section

Original Scientific Articles

Funding data