Comparison of lipophilic and size-exclusion membranes: the effect of stirring and cyclodextrin in the donor compartment

Original scientific article

Authors

DOI:

https://doi.org/10.5599/admet.2753

Keywords:

unstirred water layer, membrane transport, solubility, supersaturation ratio, carvedilol

Abstract

Background and purpose: The effective transport of an active pharmaceutical ingredient across various membrane systems is critical for enhancing its bioavailability, especially in formulations involving solubilizing agents. This study aims to investigate the permeability differences of carvedilol (CAR) between lipophilic and size-exclusion membranes in the presence of hydroxypropyl-beta-cyclodextrin (HP-β-CD) using in vitro side-by-side diffusion cell assays. Experimental approach: Solubility and permeability assays confirmed that HP-β-CD significantly enhanced the solubility of CAR, while simultaneously decreasing its permeability, indicating an interplay between the two parameters. Key results: A mathematical model based on Fick’s first law of diffusion was developed to describe drug transport across the UWL, and generally through the UWL-membrane system, with a particular focus on the role of solubilizing agents. Conclusion: Results from both the UWL and membrane limited transport conditions demonstrated that the supersaturation ratio (SSR, defined as the ratio of the drug concentration present in solution to its thermodynamic solubility measured in exactly the same media) between donor and acceptor compartments is the real driving force of the transport, when the complexing agent and the drug- HP-β-CD complex does not penetrate the membrane or the permeation of the solubilizing additive through the membrane is relatively slow, so it does not affect the transport of the API substantially.

Downloads

Download data is not yet available.

References

[1] P. Berben, E. Borbás, Intestinal Drug Absorption: Cell-Free Permeation Systems, in Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays, F.J. Hock, M.R. Gralinski, M.K. Pugsley (Eds.), Springer International Publishing, Cham, 2022, p. 1-29. https://doi.org/10.1007/978-3-030-73317-9_95-1 DOI: https://doi.org/10.1007/978-3-030-73317-9_95-1

[2] P. Berben, A. Bauer-Brandl, M. Brandl, B. Faller, G.E. Flaten, A.-C. Jacobsen, J. Brouwers, P. Augustijns. Drug permeability profiling using cell-free permeation tools: Overview and applications. European Journal of Pharmaceutical Sciences 119 (2018) 219-233. https://doi.org/https://doi.org/10.1016/j.ejps.2018.04.016 DOI: https://doi.org/10.1016/j.ejps.2018.04.016

[3] A. Adhikari, P.R. Seo, J.E. Polli. Characterization of Dissolution-Permeation System using Hollow Fiber Membrane Module and Utility to Predict in Vivo Drug Permeation Across BCS Classes. Journal of Pharmaceutical Sciences 111 (2022) 3075-3087. https://doi.org/10.1016/j.xphs.2022.07.002 DOI: https://doi.org/10.1016/j.xphs.2022.07.002

[4] E. Borbás, A. Balogh, K. Bocz, J. Müller, É. Kiserdei, T. Vigh, B. Sinkó, A. Marosi, A. Halász, Z. Dohányos, L. Szente, G.T. Balogh, Z.K. Nagy. In vitro dissolution-permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFlux™. International Journal of Pharmaceutics 491 (2015) 180-189. https://doi.org/10.1016/j.ijpharm.2015.06.019 DOI: https://doi.org/10.1016/j.ijpharm.2015.06.019

[5] A. Avdeef, M. Strafford, E. Block, M.P. Balogh, W. Chambliss, I. Khan. Drug absorption in vitro model: filter-immobilized artificial membranes. 2. Studies of the permeability properties of lactones in Piper methysticum Forst. European Journal of Pharmaceutical Sciences 14 (2001) 271-280. https://doi.org/10.1016/s0928-0987(01)00191-9 DOI: https://doi.org/10.1016/S0928-0987(01)00191-9

[6] B. Sinkó, T.M. Garrigues, G.T. Balogh, Z.K. Nagy, O. Tsinman, A. Avdeef, K. Takács-Novák. Skin-PAMPA: a new method for fast prediction of skin penetration. European Journal of Pharmaceutical Sciences 45 (2012) 698-707. https://doi.org/10.1016/j.ejps.2012.01.011 DOI: https://doi.org/10.1016/j.ejps.2012.01.011

[7] G.E. Flaten, A.B. Dhanikula, K. Luthman, M. Brandl. Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. European Journal of Pharmaceutical Sciences 27 (2006) 80-90. https://doi.org/10.1016/j.ejps.2005.08.007 DOI: https://doi.org/10.1016/j.ejps.2005.08.007

[8] M. di Cagno, H.A. Bibi, A. Bauer-Brandl. New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs. European Journal of Pharmaceutical Sciences 73 (2015) 29-34. https://doi.org/10.1016/j.ejps.2015.03.019 DOI: https://doi.org/10.1016/j.ejps.2015.03.019

[9] A. Avdeef, Absorption and Drug Development: Solubility, Permeability, and Charge State; 2nd ed, John Wiley and Sons: United States. https://doi.org/10.1002/9781118286067 DOI: https://doi.org/10.1002/9781118286067

[10] K. Sugano, Biopharmaceutics Modeling and Simulations: Theory, Practice, Methods, and Applications, John Wiley & Sons, 2012. https://doi.org/10.1002/9781118354339.ch7 DOI: https://doi.org/10.1002/9781118354339

[11] A. Avdeef. The rise of PAMPA. Expert Opin Drug Metab Toxicol 1 (2005) 325-342. https://doi.org/10.1517/17425255.1.2.325 DOI: https://doi.org/10.1517/17425255.1.2.325

[12] B. Faller. Artificial membrane assays to assess permeability. Current Drug Metabolism 9 (2008) 886-892. https://doi.org/10.2174/138920008786485227 DOI: https://doi.org/10.2174/138920008786485227

[13] M. Kansy, F. Senner, K. Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry 41 (1998) 1007-1010. https://doi.org/10.1021/jm970530e DOI: https://doi.org/10.1021/jm970530e

[14] D. Riethorst, J. Brouwers, J. Motmans, P. Augustijns. Human intestinal fluid factors affecting intestinal drug permeation in vitro. European Journal of Pharmaceutical Sciences 121 (2018) 338-346. https://doi.org/https://doi.org/10.1016/j.ejps.2018.06.007 DOI: https://doi.org/10.1016/j.ejps.2018.06.007

[15] J.B. Eriksen, J.J. Christiansen, A. Bauer-Brandl, M. Ruponen, J. Rautio, M. Brandl. In-vitro dynamic dissolution/bioconversion/permeation of fosamprenavir using a novel tool with an artificial biomimetic permeation barrier and microdialysis-sampling. European Journal of Pharmaceutical Sciences 181 (2023) 106366. https://doi.org/10.1016/j.ejps.2022.106366 DOI: https://doi.org/10.1016/j.ejps.2022.106366

[16] C. Washington. Drug release from microdisperse systems: a critical review. International Journal of Pharmaceutics 58 (1990) 1-12. https://doi.org/10.1016/0378-5173(90)90280-H DOI: https://doi.org/10.1016/0378-5173(90)90280-H

[17] P. Saokham, A. Sá Couto, A. Ryzhakov, T. Loftsson. The self-assemble of natural cyclodextrins in aqueous solutions: Application of miniature permeation studies for critical aggregation concentration (cac) determinations. International Journal of Pharmaceutics 505 (2016) 187-193. https://doi.org/10.1016/j.ijpharm.2016.03.049 DOI: https://doi.org/10.1016/j.ijpharm.2016.03.049

[18] J. Bouayed, L. Hoffmann, T. Bohn. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry 128 (2011) 14-21. https://doi.org/10.1016/j.foodchem.2011.02.052 DOI: https://doi.org/10.1016/j.foodchem.2011.02.052

[19] S.A. Raina, G.G. Zhang, D.E. Alonzo, J. Wu, D. Zhu, N.D. Catron, Y. Gao, L.S. Taylor. Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs. Pharmaceutical Research 32 (2015) 3350-3364. https://doi.org/10.1007/s11095-015-1712-4 DOI: https://doi.org/10.1007/s11095-015-1712-4

[20] A.S. Indulkar, Y. Gao, S.A. Raina, G.G. Zhang, L.S. Taylor. Exploiting the Phenomenon of Liquid-Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug. Molecular Pharmaceutics 13 (2016) 2059-2069. https://doi.org/10.1021/acs.molpharmaceut.6b00202 DOI: https://doi.org/10.1021/acs.molpharmaceut.6b00202

[21] J.P. O'Shea, P. Augustijns, M. Brandl, D.J. Brayden, J. Brouwers, B.T. Griffin, R. Holm, A.C. Jacobsen, H. Lennernäs, Z. Vinarov, C.M. O'Driscoll. Best practices in current models mimicking drug permeability in the gastrointestinal tract - An UNGAP review. European Journal of Pharmaceutical Sciences 170 (2022) 106098. https://doi.org/10.1016/j.ejps.2021.106098 DOI: https://doi.org/10.1016/j.ejps.2021.106098

[22] E. Borbás, P. Tőzsér, K. Tsinman, O. Tsinman, K. Takács-Novák, G. Völgyi, B. Sinkó, Z.K. Nagy. Effect of Formulation Additives on Drug Transport through Size-Exclusion Membranes. Molecular Pharmaceutics 15 (2018) 3308-3317. https://doi.org/10.1021/acs.molpharmaceut.8b00343 DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00343

[23] P. Berben, J. Brouwers, P. Augustijns. The artificial membrane insert system as predictive tool for formulation performance evaluation. International Journal of Pharmaceutics 537 (2018) 22-29. https://doi.org/https://doi.org/10.1016/j.ijpharm.2017.12.025 DOI: https://doi.org/10.1016/j.ijpharm.2017.12.025

[24] P. Berben, J. Brouwers, P. Augustijns. Assessment of Passive Intestinal Permeability Using an Artificial Membrane Insert System. Journal of Pharmaceutical Sciences 107 (2018) 250-256. https://doi.org/10.1016/j.xphs.2017.08.002 DOI: https://doi.org/10.1016/j.xphs.2017.08.002

[25] K. Sakai. Determination of pore size and pore size distribution: 2. Dialysis membranes. Journal of Mem¬brane Science 96 (1994) 91-130. https://doi.org/https://doi.org/10.1016/0376-7388(94)00127-8 DOI: https://doi.org/10.1016/0376-7388(94)00127-8

[26] A. Dahan, A. Beig, D. Lindley, J.M. Miller. The solubility-permeability interplay and oral drug formulation design: Two heads are better than one. Advanced Drug Delivery Reviews 101 (2016) 99-107. https://doi.org/10.1016/j.addr.2016.04.018 DOI: https://doi.org/10.1016/j.addr.2016.04.018

[27] S. Kádár, P. Tőzsér, B. Nagy, A. Farkas, Z.K. Nagy, O. Tsinman, K. Tsinman, D. Csicsák, G. Völgyi, K. Takács-Novák, E. Borbás, B. Sinkó. Flux-Based Formulation Development-A Proof of Concept Study. The AAPS Journal 24 (2022) 22. https://doi.org/10.1208/s12248-021-00668-9 DOI: https://doi.org/10.1208/s12248-021-00668-9

[28] A. De Simone, L. Davani, S. Montanari, V. Tumiatti, S. Avanessian, F. Testi, V. Andrisano. Combined Methodologies for Determining In Vitro Bioavailability of Drugs and Prediction of In Vivo Bioequivalence From Pharmaceutical Oral Formulations. Frontiers in Chemistry 9 (2021) 741876. https://doi.org/10.3389/fchem.2021.741876 DOI: https://doi.org/10.3389/fchem.2021.741876

[29] A. Beig, J.M. Miller, D. Lindley, R.A. Carr, P. Zocharski, R. Agbaria, A. Dahan. Head-To-Head Comparison of Different Solubility-Enabling Formulations of Etoposide and Their Consequent Solubility-Permeability Interplay. Journal of Pharmaceutical Sciences 104 (2015) 2941-2947. https://doi.org/10.1002/jps.24496 DOI: https://doi.org/10.1002/jps.24496

[30] M. Van der Veken, J. Brouwers, N. Parrott, P. Augustijns, C. Stillhart. Investigating the effect of whey and casein proteins on drug solubility from a paediatric drug absorption perspective. International Journal of Pharmaceutics: X 8 (2024) 100290. https://doi.org/10.1016/j.ijpx.2024.100290 DOI: https://doi.org/10.1016/j.ijpx.2024.100290

[31] K. Ueda, L.S. Taylor. Partitioning of surfactant into drug-rich nanodroplets and its impact on drug thermodynamic activity and droplet size. Journal of Controlled Release 330 (2021) 229-243. https://doi.org/10.1016/j.jconrel.2020.12.018 DOI: https://doi.org/10.1016/j.jconrel.2020.12.018

[32] M.J. Jackson, U.S. Kestur, M.A. Hussain, L.S. Taylor. Dissolution of Danazol Amorphous Solid Dispersions: Supersaturation and Phase Behavior as a Function of Drug Loading and Polymer Type. Molecular Pharmaceutics 13 (2016) 223-231. https://doi.org/10.1021/acs.molpharmaceut.5b00652 DOI: https://doi.org/10.1021/acs.molpharmaceut.5b00652

[33] T. Loftsson, S.B. Vogensen, C. Desbos, P. Jansook. Carvedilol: solubilization and cyclodextrin complexation: a technical note. AAPS PharmSciTech 9 (2008) 425-430. https://doi.org/10.1208/s12249-008-9055-7 DOI: https://doi.org/10.1208/s12249-008-9055-7

[34] T. Loftsson. Cyclodextrins in Parenteral Formulations. Journal of Pharmaceutical Sciences 110 (2021) 654-664. https://doi.org/10.1016/j.xphs.2020.10.026 DOI: https://doi.org/10.1016/j.xphs.2020.10.026

[35] S. Sripetch, M. Prajapati, T. Loftsson. Cyclodextrins and Drug Membrane Permeation: Thermodynamic Considerations. Journal of Pharmaceutical Sciences 111 (2022) 2571-2580. https://doi.org/https://doi.org/10.1016/j.xphs.2022.04.015 DOI: https://doi.org/10.1016/j.xphs.2022.04.015

[36] Y.L. Hsieh, G.A. Ilevbare, B. Van Eerdenbrugh, K.J. Box, M.V. Sanchez-Felix, L.S. Taylor. pH-Induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. Pharmaceutical Research 29 (2012) 2738-2753. https://doi.org/10.1007/s11095-012-0759-8 DOI: https://doi.org/10.1007/s11095-012-0759-8

[37] J.H. Fagerberg, Y. Al-Tikriti, G. Ragnarsson, C.A.S. Bergström. Ethanol Effects on Apparent Solubility of Poorly Soluble Drugs in Simulated Intestinal Fluid. Molecular Pharmaceutics 9 (2012) 1942-1952. https://doi.org/10.1021/mp2006467 DOI: https://doi.org/10.1021/mp2006467

[38] H. Pataki, I. Markovits, B. Vajna, Z.K. Nagy, G. Marosi. In-Line Monitoring of Carvedilol Crystallization Using Raman Spectroscopy. Crystal Growth & Design 12 (2012) 5621-5628. https://doi.org/10.1021/cg301135z DOI: https://doi.org/10.1021/cg301135z

[39] H. Pataki, I. Csontos, Z.K. Nagy, B. Vajna, M. Molnar, L. Katona, G. Marosi. Implementation of Raman Signal Feedback to Perform Controlled Crystallization of Carvedilol. Organic Process Research & Development 17 (2013) 493-499. https://doi.org/10.1021/op300062t DOI: https://doi.org/10.1021/op300062t

[40] A. Singh, M. Pallastrelli, M. Santoro. Direct chiral separations of third generation b-blockers through high performance liquid chromatography. Scientia Chromatographica 7 (2015) 65-84. https://www.researchgate.net/publication/281664439_Direct_chiral_separations_of_third_generation_b-blockers_through_high_performance_liquid_chromatography_a_review DOI: https://doi.org/10.4322/sc.2015.017

[41] N.A. Al-Rawashdeh, K.S. Al-Sadeh, M.B. Al-Bitar. Physicochemical study on microencapsulation of hydroxypropyl-beta-cyclodextrin in dermal preparations. Drug Development and Industrial Pharmacy 36 (2010) 688-697. https://doi.org/10.3109/03639040903449738 DOI: https://doi.org/10.3109/03639040903449738

[42] J. Karlsson, P. Artursson. A method for the determination of cellular permeability coefficients and aqueous boundary layer thickness in monolayers of intestinal epithelial ( Caco-2) cells grown in permeable filter chambers. International Journal of Pharmaceutics 71 (1991) 55-64. https://doi.org/https://doi.org/10.1016/0378-5173(91)90067-X DOI: https://doi.org/10.1016/0378-5173(91)90067-X

[43] A. Walter, J. Gutknecht. Monocarboxylic acid permeation through lipid bilayer membranes. The Journal of Membrane Biology 77 (1984) 255-264. https://doi.org/10.1007/BF01870573 DOI: https://doi.org/10.1007/BF01870573

[44] J. Gutknecht, M.A. Bisson, F.C. Tosteson. Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. Journal of General Physiology 69 (1977) 779-794. https://doi.org/10.1085/jgp.69.6.779 DOI: https://doi.org/10.1085/jgp.69.6.779

[45] J. Gutknecht, D.C. Tosteson. Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers. Science 182 (1973) 1258-1261. https://doi.org/10.1126/science.182.4118.1258 DOI: https://doi.org/10.1126/science.182.4118.1258

[46] A. Dahan, J.M. Miller, A. Hoffman, G.E. Amidon, G.L. Amidon. The Solubility–Permeability Interplay in Using Cyclodextrins as Pharmaceutical Solubilizers: Mechanistic Modeling and Application to Progesterone. Journal of Pharmaceutical Sciences 99 (2010) 2739-2749. https://doi.org/10.1002/jps.22033

[47] E. Baka, J.E. Comer, K. Takács-Novák. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. Journal of Pharmaceutical and Biomedical Analysis 46 (2008) 335-341. https://doi.org/10.1016/j.jpba.2007.10.030 DOI: https://doi.org/10.1016/j.jpba.2007.10.030

[48] A. Avdeef, E. Fuguet, A. Llinàs, C. Ràfols, E. Bosch, G. Völgyi, T. Verbić, E. Boldyreva, K. Takács-Novák. Equilibrium solubility measurement of ionizable drugs –consensus recommendations for improving data quality. ADMET and DMPK 4 (2016). https://doi.org/10.5599/admet.4.2.292 DOI: https://doi.org/10.5599/admet.4.2.292

[49] Mettler-Toledo STARe Evaluation Software. https://www.mt.com/us/en/home/library/software-downloads/lab-analytical-instruments/STARe_Eval_SW.html (accessed 24 June 2025)

[50] PerkinElmer Inc. Spectrum Software v5 0.1, https://shop.perkinelmer.com/product/L6100117 (accessed 24 June 2025)

[51] Á. Buvári, L. Barcza. β-cyclodextrin complexes of different type with inorganic compounds. Inorganica Chimica Acta 33 (1979) L179-L180. https://doi.org/10.1016/S0020-1693(00)89441-4 DOI: https://doi.org/10.1016/S0020-1693(00)89441-4

[52] K. Sugano. Aqueous boundary layers related to oral absorption of a drug: from dissolution of a drug to carrier mediated transport and intestinal wall metabolism. Molecular Pharmaceutics 7 (2010) 1362-1373. https://doi.org/10.1021/mp1001119 DOI: https://doi.org/10.1021/mp1001119

[53] T. Higuchi, K.A. Connors, Phase Solubility Techniques, in Advanced Analytical Chemistry of Instrumentation,1965, p. 117-212. https://doi.org/10.1016/B978-0-08-012210-6.50004-1 DOI: https://doi.org/10.1016/B978-0-08-012210-6.50004-1

[54] . Loftsson, P. Jarho, M. Másson, T. Järvinen. Cyclodextrins in drug delivery. Expert Opinion on Drug Delivery 2 (2005) 335-351. https://doi.org/10.1517/17425247.2.1.335 DOI: https://doi.org/10.1517/17425247.2.1.335

[55] M.E. Brewster, T. Loftsson. Cyclodextrins as pharmaceutical solubilizers. Advanced Drug Delivery Reviews 59 (2007) 645-666. https://doi.org/10.1016/j.addr.2007.05.012 DOI: https://doi.org/10.1016/j.addr.2007.05.012

[56] A.R. Sá Couto, A. Ryzhakov, T. Loftsson. 2-Hydroxypropyl-β-Cyclodextrin Aggregates: Identification and Development of Analytical Techniques. Materials 11 (2018) 1971. https://doi.org/10.3390/ma11101971 DOI: https://doi.org/10.3390/ma11101971

[57] Patient Information of Sporanox (Itraconazole) Capsules. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020083s062lbl.pdf (accessed 24 June 2025)

[58] A. Dahan, J.M. Miller, A. Hoffman, G.E. Amidon, G.L. Amidon. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. Journal of Pharmaceutical Sciences 99 (2010) 2739-2749. https://doi.org/10.1002/jps.22033 DOI: https://doi.org/10.1002/jps.22033

[59] J.M. Miller, A. Beig, B.J. Krieg, R.A. Carr, T.B. Borchardt, G.E. Amidon, G.L. Amidon, A. Dahan. The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Molecular Pharmaceutics 8 (2011) 1848-1856. https://doi.org/10.1021/mp200181v DOI: https://doi.org/10.1021/mp200181v

[60] K. Sugano. Estimation of effective intestinal membrane permeability considering bile micelle solubilisation. International Journal of Pharmaceutics 368 (2009) 116-122. https://doi.org/https://doi.org/10.1016/j.ijpharm.2008.10.001 DOI: https://doi.org/10.1016/j.ijpharm.2008.10.001

[61] K. Sugano, M. Kataoka, C. Mathews Cda, S. Yamashita. Prediction of food effect by bile micelles on oral drug absorption considering free fraction in intestinal fluid. European Journal of Pharmaceutical Sciences 40 (2010) 118-124. https://doi.org/10.1016/j.ejps.2010.03.011 DOI: https://doi.org/10.1016/j.ejps.2010.03.011

[62] E. Borbás, B. Sinkó, O. Tsinman, K. Tsinman, É. Kiserdei, B. Démuth, A. Balogh, B. Bodák, A. Domokos, G. Dargó, G.T. Balogh, Z.K. Nagy. Investigation and Mathematical Description of the Real Driving Force of Passive Transport of Drug Molecules from Supersaturated Solutions. Molecular Pharmaceutics 13 (2016) 3816-3826. https://doi.org/10.1021/acs.molpharmaceut.6b00613 DOI: https://doi.org/10.1021/acs.molpharmaceut.6b00613

Published

05-07-2025

Issue

Section

Pharmaceutics

How to Cite

Comparison of lipophilic and size-exclusion membranes: the effect of stirring and cyclodextrin in the donor compartment: Original scientific article. (2025). ADMET and DMPK, 13(4), 2753. https://doi.org/10.5599/admet.2753

Funding data

Similar Articles

31-40 of 249

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)