Enhancement of apixaban's solubility and dissolution rate by inclusion complex (β-cyclodextrin and hydroxypropyl β-cyclo¬dextrin) and computational calculation of their inclusion complexes


  • Zainab N. Salman Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan https://orcid.org/0009-0000-7129-2766
  • Israa Al-Ani Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan https://orcid.org/0000-0002-5123-3483
  • Khaldun M. Al Azzam Pharmacological and Diagnostic Research Center (PDRC), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan https://orcid.org/0000-0003-4097-6991
  • Bashar JM. Majeed 1Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan https://orcid.org/0000-0003-4640-3203
  • Hassan H. Abdallah Chemistry Department, College of Education, Salahaddin University-Erbil, Iraq. https://orcid.org/0000-0002-9198-0475
  • El-Sayed Negim School of Materials Science and Green Technologies, Kazakh-British Technical University, St. Tole bi, 59, Almaty 050000, Kazakhstan and School of Petroleum Engineering, Satbayev University, 22 Satpayev Street, Almaty 050013, Kazakhstan https://orcid.org/0000-0002-4370-8995




Apixaban, HPβCD, βCD, capsule, bioavailability, solubility
Graphical Abstract


Background and Purpose: Apixaban (AP) is a factor X inhibitor, an orally active drug that inhibits blood coagulation for better prevention of venous thromboembolism. It has poor solubility, dissolution rate and low bioavailability. The aim of this study was to improve the aqueous solubility and dissolution rate of oral AP as a step to enhance its bioavailability by preparing it as an inclusion complex with beta- and hydroxy propyl beta-cyclodextrin. Experimental Approach: A simple, rapid method of analysis of AP was developed using ultraviolet spectrophotometry (UV) and partially validated in terms of linearity, precision and accuracy, recovery, and robustness. AP was prepared as a complex with beta cyclodextrin (βCD) and hydroxy propyl beta cyclodextrin (HPβCD) in weight ratios 1:1, 1:2, and 1:3 by kneading, solvent evaporation and spray drying methods and characterized by Fourier transfer infra-red (FTIR), differential scanning calorimetry (DSC), and percent drug content in each of the prepared complex. Using the computer simulation, the interactions of AP with βCD and HPβCD were investigated. Key Results: The phase solubility study showed that the solubility of AP was greatly enhanced from 54×10-3 mmol /L to 66 mmol/L using HPβCD with acceptable stability constant. Computer docking supports the formation of a stable 1:1 complex between AP and CD’s. The dissolution test results showed that the complex gave a significantly higher percentage of drug release (95%) over one hour compared to the free AP (60%) (p<0.05). Conclusion: AP- HPβCD complex in the ratio of 1:2 (w/w) can significantly improve the solubility and in vitro dissolution rate of AP.


Download data is not yet available.


A. Sharma, M. Soni, S. Kumar, G.D. Gupta. Solubility enhancement—eminent role in poorly soluble drugs. Research Journal of Pharmacy and Technology 2 (2009) 220-224.‏ https://rjptonline.org/AbstractView.aspx?PID=2009-2-2-46

J. Hodgson. ADMET—turning chemicals into drugs. Nature Biotechnology 19 (2001) 722-726. https://doi.org/10.1038/90761‏

K.T. Savjani, A.K. Gajjar, J.K. Savjani. Drug Solubility: Importance and Enhancement Techniques. International Scholary Research Notices 2012 (2012) 1–10. https://doi.org/10.5402/2012/195727

C. Lipiniski, C.J Lipinski, C. Lipinski, C.A. Lipinski, C. Lipinski, C.A. Lipinski, Lipinski, C.A. Lipinski. Poor aqueous solubility - an industry wide problem in drug delivery. American Pharmaceutical Review 5 (2002) 82-85. https://www.scienceopen.com/document?vid=dbc999fb-0f66-463c-8166-d6576f8778d5

Z. Guo, C. Boyce, T. Rhodes, L. Liu, G.M. Salituro, K.J. Lee, A. Bak, D.H. Leung. A novel method for preparing stabilized amorphous solid dispersion drug formulations using acoustic fusion. International Journal of Pharmaceutics 592 (2021) 120026. https://doi.org/10.1016/j.ijpharm.2020.120026

V.R. Vemula, V. Lagishetty, S. Lingala. Solubility enhancement techniques. International Journal of Pharmaceutical Sciences Review and Research 5 (2010) 41-51.‏ https://globalresearchonline.net/journalcontents/volume5issue1/article-007.pdf

D.J. Pinto, M.J. Orwat, S. Koch, K.A. Rossi, R.S. Alexander, A. Smallwood, P.C. Wong, A.R. Rendina, J.M. Luettgen, R.M. Knabb, K. He, B. Xin, R.R. Wexler, P.Y.S. Lam. Discovery of 1-(4-methoxy¬phenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl) phenyl)-4, 5, 6, 7-tetrahydro-1 H-pyrazolo [3, 4-c] pyridine-3-carboxamide (Apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bio¬available inhibitor of blood coagulation factor Xa. Journal of Medicinal Chemistry 50 (2007) 5339-5356.‏ https://doi.org/10.1021/jm070245n

E.D. Deeks. Apixaban. Drugs 72 (2012) 1271-1291.‏ https://doi.org/10.2165/11209020-000000000-00000

Y. Falck-Ytter, C.W. Francis, N.A. Johanson, C. Curley, O.E. Dahl, S. Schulman, T.L. Ortel, S.G. Pauker, C.W.C. Jr. Prevention of VTE in orthopedic surgery patients: antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 141 (2012) e278S-e325S.‏ https://doi.org/10.1378/chest.11-2404

P.C. Wong, D.J. Pinto, D. Zhang. D. Preclinical discovery of apixaban, a direct and orally bioavailable factor Xa inhibitor. Journal of Thrombosis and Thrombolysis 31 (2011) 478-492. https://doi.org/10.1007/s11239-011-0551-3

H. Li, A. Farajtabar, Y. Xie, Z. Li, H. Zhao. Apixaban (I) in several aqueous co-solvent mixtures: Solubility, solvent effect and preferential solvation. The Journal of Chemical Thermodynamics 150 (2020) 106200. https://doi.org/10.1016/j.jct.2020.106200

W. Byon, S. Garonzik, R.A. Boyd, C.E. Frost. Apixaban: a clinical pharmacokinetic and pharmacodynamic review. Clinical Pharmacokinetics 58 (2019) 1265-1279.‏ https://doi.org/10.1007/s40262-019-00775-z

D. Zhang, K. He, J.J. Herbst, J. Kolb, W. Shou, L. Wang, P.V. Balimane, Y.H. Han, J. Gan, C.E. Frost, W.G. Humphreys. Characterization of efflux transporters involved in distribution and disposition of apixaban. Drug Metabolism and Disposition 41 (2013) 827-835. https://doi.org/10.1124/dmd.112.050260

A. Jaber, I. Al-Ani, M. Hailat, E. Daoud, A. Abu-Rumman, Z. Zakaraya, B.J. Majeed, O. Al Meanazel, W.A. Dayyih. Esomeprazole and apixaban pharmacokinetic interactions in healthy rats. Heliyon 8 (2022) e11015. https://doi.org/10.1016/j.heliyon.2022.e11015

C. Ward, G. Conner, G. Donnan, A. Gallus S. McRae. Practical management of patients on apixaban: a consensus guide. Thrombosis Journal 11 (2013) 1-8. https://doi.org/10.1186/1477-9560-11-27

L. Wang, N. Raghavan, K. He, J.M. Luettgen, W.G. Humphreys, R.M. Knabb, D.J. Pinto, D. Zhang. Sulfation of o-demethyl apixaban: enzyme identification and species comparison. Drug Metabolism and Disposition 37 (2009) 802-808.‏ https://doi.org/10.1124/dmd.108.025593

M.E. Davis, M.E. Brewster. Cyclodextrin-based pharmaceutics: past, present and future. Nature Reviews Drug Discovery 3 (2004) 1023-1035.‏ https://doi.org/10.1038/nrd1576

M.M. Doile, K.A. Fortunato, I.C. Schmücker, S.K. Schucko, M.A.S. Silva, P.O. Rodrigues. Physicochemical properties and dissolution studies of dexamethasone acetate-β-Cyclodextrin inclusion complexes produced by different methods. AAPS PharmSciTech 9 (2008) 314-322. https://doi.org/10.1208/s12249-008-9042-z

ChemSpider database. http://www.chemspider.com/ (Accessed date: 01/08/2023).

Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Jr., Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö.Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. and Fox. Gaussian, Inc., Wallingford CT, 2009. https://www.scienceopen.com/document?vid=839f33cc-9114-4a55-8f1a-3f1520324ef5

Apixaban in: https://www.rxlist.com/eliquis-drug.htm (Accessed date: 20/04/2023).

Y. Chen, L. Li, J. Yao, Y.Y. Ma, J.M. Chen, T.B. Lu. Improving the solubility and bioavailability of apixaban via apixaban–oxalic acid cocrystal. Crystal Growth and Design 16 (2016) 2923-2930.‏ https://doi.org/10.1021/acs.cgd.6b00266

S. Sip, A. Gościniak, P. Szulc, J. Walkowiak, J. Cielecka-Piontek, J. Assisted Extraction with cyclodextrins as a way of improving the Antidiabetic activity of actinidia leaves. Pharmaceutics 14 (2022) 2473. https://doi.org/10.3390/pharmaceutics14112473



10-08-2023 — Updated on 10-08-2023

How to Cite

Salman, Z. N., Al-Ani, I., Al Azzam, K. M., Majeed, B. J., Abdallah, H. H., & Negim, E.-S. (2023). Enhancement of apixaban’s solubility and dissolution rate by inclusion complex (β-cyclodextrin and hydroxypropyl β-cyclo¬dextrin) and computational calculation of their inclusion complexes. ADMET and DMPK, 11(4), 533–550. https://doi.org/10.5599/admet.1885



Original Scientific Articles