Molecular properties, including chameleonicity, as essential tools for designing the next generation of oral beyond rule of five drugs

Authors

  • Diego Garcia Jimenez CASSMedChem, Molecular Biotechnology and Health Sciences Dept., University of Torino, Piazza Nizza 44, 10126 Torino, Italy https://orcid.org/0000-0002-7247-1480
  • Maura Vallaro CASSMedChem, Molecular Biotechnology and Health Sciences Dept., University of Torino, Piazza Nizza 44, 10126 Torino, Italy https://orcid.org/0000-0003-2735-6771
  • Luigi Vitagliano CASSMedChem, Molecular Biotechnology and Health Sciences Dept., University of Torino, Piazza Nizza 44, 10126 Torino, Italy https://orcid.org/0009-0003-6428-7901
  • Lucia Lopez Lopez CASSMedChem, Molecular Biotechnology and Health Sciences Dept., University of Torino, Piazza Nizza 44, 10126 Torino, Italy
  • Giulia Apprato CASSMedChem, Molecular Biotechnology and Health Sciences Dept., University of Torino, Piazza Nizza 44, 10126 Torino, Italy https://orcid.org/0000-0001-6906-2849
  • Giuseppe Ermondi CASSMedChem, Molecular Biotechnology and Health Sciences Dept., University of Torino, Piazza Nizza 44, 10126 Torino, Italy https://orcid.org/0000-0003-3710-3102
  • Giulia Caron CASSMedChem, Molecular Biotechnology and Health Sciences Dept., University of Torino, Piazza Nizza 44, 10126 Torino, Italy https://orcid.org/0000-0002-2417-5900

DOI:

https://doi.org/10.5599/admet.2334

Keywords:

bRo5, chameleonicity, ionization, lipophilicity, new chemical modalities, polarity, PROTAC
Graphical Abstract

Abstract

Background and Purpose. The classical drug discovery toolbox continually expands beyond traditional rule of five (Ro5)-compliant small molecules to include new chemical modalities for difficult-to-drug targets. The paper focuses on the molecular properties essential to drive oral bioavailability within the bRo5 framework. Experimental Approach. The first part outlines the concept and methodologies for characterizing bRo5 physicochemical properties, including considerations on chameleonicity; in particular, the paper sum­marizes the content of the last author’s talk presented during the IAPC-10 Meeting held in Belgrade in September 2023 (https://iapchem.org/index.php/iapc-10-home). The second part of the manuscript presents novel experimental and computational data on three proteolysis targeting chimeras (PROTACs) currently in clinical trials. Key Results. Molecular descriptors of ARV-110, ARV-471, and DT-2216 are reported and the main limitations of the applied experimental approaches are discussed. Moreover, a simple computational method shows how predicting the presence of chameleonic effects. Conclusion. A full complete physicochemical characterization of three degraders in clinical trial is reported to highlight the differences in physicochemical descriptors between PROTACs dosed orally and intravenously.

Downloads

Download data is not yet available.

References

C.V. Dang, E.P. Reddy, K.M. Shokat, L. Soucek. Drugging the ‘undruggable’ cancer targets. Nature Reviews Cancer 17 (2017) 502-508. https://doi.org/10.1038/nrc.2017.36.

M.J. Blanco, K.M. Gardinier. New Chemical Modalities and Strategic Thinking in Early Drug Discovery. ACS Medicinal Chemistry Letters 11 (2020) 228-231. https://doi.org/10.1021/acsmedchemlett.9b00582.

M.J. Blanco, K.M. Gardinier, M.N. Namchuk. Advancing New Chemical Modalities into Clinical Studies. ACS Medicinal Chemistry Letters 13 (2022) 1691-1698. https://doi.org/10.1021/acsmedchemlett.2c00375.

A.C. Lai, C.M. Crews. Induced protein degradation: An emerging drug discovery paradigm. Nature Reviews Drug Discovery 16 (2017) 101-114. https://doi.org/10.1038/nrd.2016.211.

D. Garcia Jimenez, V. Poongavanam, J. Kihlberg. Macrocycles in Drug Discovery─Learning from the Past for the Future. Journal of Medicinal Chemistry 66 (2023) 5377-5396. https://doi.org/10.1021/acs.jmedchem.3c00134.

D.S. Nielsen, N.E. Shepherd, W. Xu, A.J. Lucke, M.J. Stoermer, D.P. Fairlie. Orally Absorbed Cyclic Peptides. Chemical Reviews 117 (2017) 8094-8128. https://doi.org/10.1021/acs.chemrev.6b00838.

A. Seelig. P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacotherapy of Cancers. Frontiers in Oncology 10 (2020). https://doi.org/10.3389/fonc.2020.576559.

M.T. Kim, A. Sedykh, S.K. Chakravarti, R.D. Saiakhov, H. Zhu. Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharmaceutical Research 31 (2014) 1002-1014. https://doi.org/10.1007/s11095-013-1222-1.

G. Caron, V. Digiesi, S. Solaro, G. Ermondi. Flexibility in early drug discovery: focus on the beyond-Rule-of-5 chemical space. Drug Discovery Today 25 (2020) 621-627. https://doi.org/10.1016/j.drudis.2020.01.012.

E. Price, M. Weinheimer, A. Rivkin, G. Jenkins, M. Nijsen, P.B. Cox, D. DeGoey. Beyond Rule of Five and PROTACs in Modern Drug Discovery: Polarity Reducers, Chameleonicity, and the Evolving Physicochemical Landscape. Journal of Medicinal Chemistry 67 (2024) 5683-5698. https://doi.org/10.1021/acs.jmedchem.3c02332.

A. Pike, B. Williamson, S. Harlfinger, S. Martin, D.F. McGinnity. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discovery Today 25 (2020) 1793-1800. https://doi.org/10.1016/j.drudis.2020.07.013.

P.A. Carrupt, B. Testa, A. Bechalany, N. El Tayar, P. Descas, D. Perrissoud. Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. Journal of Medicinal Chemistry 34 (1991) 1272-1275.

A. Alex, D.S. Millan, M. Perez, F. Wakenhut, G.A. Whitlock. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. Medicinal Chemistry Communications 2 (2011) 669. https://doi.org/10.1039/c1md00093d.

M. Vallaro, G. Ermondi, J. Saame, I. Leito, G. Caron. Ionization and lipophilicity in nonpolar media mimicking the cell membrane interior. Bioorganic & Medicinal Chemistry 81 (2023) 117203. https://doi.org/10.1016/j.bmc.2023.117203.

G. Caron, M. Vallaro, G. Ermondi, G.H.G.H. Goetz, Y.A.Y.A. Abramov, L. Philippe, M. Shalaeva. A Fast Chromatographic Method for Estimating Lipophilicity and Ionization in Nonpolar Membrane-Like Environment. Molecular Pharmaceutics 13 (2016) 1100-1110 https://doi.org/10.1021/acs.molpharmaceut.5b00910.

P. Matsson, J. Kihlberg. How Big Is Too Big for Cell Permeability?. Journal of Medicinal Chemistry 60 (2017) 1662-1664. https://doi.org/10.1021/acs.jmedchem.7b00237.

C.R.W. Guimarães, A.M. Mathiowetz, M. Shalaeva, G. Goetz, S. Liras. Use of 3D Properties to Characterize Beyond Rule-of-5 Property Space for Passive Permeation. Journal of Chemical Information and Modeling 52 (2012) 882-890. https://doi.org/10.1021/ci300010y.

M. Rossi Sebastiano, D. Garcia Jimenez, M. Vallaro, G. Caron, G. Ermondi. Refinement of Computational Access to Molecular Physicochemical Properties: From Ro5 to bRo5. Journal of Medicinal Chemistry 65 (2022) 12068-12083. https://doi.org/10.1021/acs.jmedchem.2c00774.

B. Testa, G. Caron, P. Crivori, S. Rey, M. Reist, P.A. Carrupt. Lipophilicity and related molecular properties as determinants of pharmacokinetic behavior. Chimia 54 (2000) 672.

K. Valkó, C. Bevan, D. Reynolds. Chromatographic Hydrophobicity Index by Fast-Gradient RP-HPLC: A High-Throughput Alternative to log P/log D. Analytical Chemistry 69 (1997) 2022-2029. https://doi.org/10.1021/ac961242d.

F. Lombardo, M.Y. Shalaeva, K.A Tupper, F. Gao, M.H. Abraham. ElogPoct: a tool for lipophilicity determination in drug discovery. Journal of Medicinal Chemistry 43 (2000) 2922-2928. http://www.ncbi.nlm.nih.gov/pubmed/11448232.

F. Lombardo, M.Y. Shalaeva, K.A. Tupper, F. Gao. ElogD oct: A Tool for Lipophilicity Determination in Drug Discovery. 2. Basic and Neutral Compounds. Journal of Medicinal Chemistry 44 (2001) 2490-2497.

G. Ermondi, M. Vallaro, G.H. Goetz, M. Shalaeva, G. Caron. Updating the portfolio of physicochemical descriptors related to permeability in the Beyond the Rule of 5 chemical space. European Journal of Pharmaceutical Sciences 146 (2020) 105274. https://doi.org/10.1016/j.ejps.2020.105274.

K. Valko, C.M.M. Du, C. Bevan, D.P.P. Reynolds, M.H.H. Abraham. Rapid method for the estimation of octanol/water partition coefficient (Log Poct) from gradient RP-HPLC retention and a hydrogen bond acidity term (∑α2nH). Current Medicinal Chemistry 8 (2001) 1137-1146. https://doi.org/10.2174/0929867013372643.

G. Caron, M. Vallaro, G. Ermondi. The Block Relevance (BR) analysis to aid medicinal chemists to determine and interpret lipophilicity. Medicinal Chemistry Communications 4 (2013) 1376. https://doi.org/10.1039/c3md00140g.

G. Caron, M. Vallaro, G. Ermondi. The Block Relevance (BR) Analysis Makes the Choice of Methods for Measuring Lipophilicity and Permeability Safer and Speeds Up Drug Candidate Prioritization. Current Pharmaceutical Design 26 (2020) 5662-5667. https://doi.org/10.2174/1381612826666201109111124.

C. Pidgeon, S. Ong, H. Liu, X. Qiu, M. Pidgeon, a H. Dantzig, J. Munroe, W.J. Hornback, J.S. Kasher, L. Glunz. IAM chromatography: an in vitro screen for predicting drug membrane permeability. Journal of Medicinal Chemistry 38 (1995) 590-594. https://doi.org/10.1021/jm00004a004.

A. Taillardat-Bertschinger, P.-A. Carrupt, F. Barbato, B. Testa. Immobilized artificial membrane HPLC in drug research. Journal of Medicinal Chemistry 46 (2003) 655-665. https://doi.org/10.1021/jm020265j.

G.H. Goetz, W. Farrell, M. Shalaeva, S. Sciabola, D. Anderson, J. Yan, L. Philippe, M.J. Shapiro. High throughput method for the indirect detection of intramolecular hydrogen bonding. Journal of Medicinal Chemistry 57 (2014) 2920-2929. https://doi.org/10.1021/jm401859b.

G.H. Goetz, L. Philippe, M.J. Shapiro. EPSA: A Novel Supercritical Fluid Chromatography Technique Enabling the Design of Permeable Cyclic Peptides. ACS Medicinal Chemistry Letters 5 (2014) 1167-72. https://doi.org/10.1021/ml500239m.

L. Grumetto, C. Carpentiero, F. Barbato. Lipophilic and electrostatic forces encoded in IAM-HPLC indexes of basic drugs: Their role in membrane partition and their relationships with BBB passage data. European Journal of Pharmaceutical Sciences 45 (2012) 685-692. https://doi.org/10.1016/j.ejps.2012.01.008.

G. Ermondi, M. Vallaro, G. Caron. Learning how to use IAM chromatography for predicting permeability. European Journal of Pharmaceutical Sciences 114 (2018) 385-390. https://doi.org/10.1016/j.ejps.2018.01.001.

G.H. Goetz, M. Shalaeva, G. Caron, G. Ermondi, L. Philippe. Relationship between Passive Permeability and Molecular Polarity Using Block Relevance Analysis. Molecular Pharmaceutics 14 (2017) acs.molpharmaceut.6b00724. https://doi.org/10.1021/acs.molpharmaceut.6b00724.

E. Price, M. Weinheimer, A. Rivkin, G. Jenkins, M. Nijsen, P.B. Cox, D. DeGoey. Beyond Rule of Five and PROTACs in Modern Drug Discovery: Polarity Reducers, Chameleonicity, and the Evolving Physicochemical Landscape. Journal of Medicinal Chemistry 67 (2024) 5683-5698. https://doi.org/10.1021/acs.jmedchem.3c02332.

Y.T. Wang, E. Price, M. Feng, J. Hulen, S. Doktor, D.M. Stresser, E.M. Maes, Q.C. Ji, G.J. Jenkins. High-Throughput SFC-MS/MS Method to Measure EPSA and Predict Human Permeability. Journal of Medicinal Chemistry 2024 https://doi.org/10.1021/acs.jmedchem.4c00571.

D.A. Degoey, H.J. Chen, P.B. Cox, M.D. Wendt. Beyond the Rule of 5: Lessons Learned from AbbVie’s Drugs and Compound Collection. Journal of Medicinal Chemistry 61 (2018) 2636-2651. https://doi.org/10.1021/acs.jmedchem.7b00717.

M. Shalaeva, G. Caron, Y.A. Abramov, T.N.O. Connell, M.S. Plummer, G. Yalamanchi, K.A. Farley, G.H. Goetz, L. Philippe, M.J. Shapiro. Integrating Intramolecular Hydrogen Bonding (IMHB) Considerations in Drug Discovery Using Δ logP as a Tool. Journal of Medicinal Chemistry 56 (2013) 4870-4879. https://doi.org/10.1021/jm301850m.

M. Rossi Sebastiano, B.C. Doak, M. Backlund, V. Poongavanam, B. Over, G. Ermondi, G. Caron, P. Matsson, J. Kihlberg. Impact of Dynamically Exposed Polarity on Permeability and Solubility of Chameleonic Drugs beyond the Rule of 5. Journal of Medicinal Chemistry 61 (2018) 4189-4202. https://doi.org/10.1021/acs.jmedchem.8b00347.

E. Danelius, V. Poongavanam, S. Peintner, L.H.E. Wieske, M. Erdélyi, J. Kihlberg. Solution Conformations Explain the Chameleonic Behaviour of Macrocyclic Drugs. Chemistry - A European Journal 26 (2020) 5231-5244. https://doi.org/10.1002/chem.201905599.

D. Garcia Jimenez, M. Vallaro, M. Rossi Sebastiano, G. Apprato, G. D’Agostini, P. Rossetti, G. Ermondi, G. Caron. Chamelogk: A Chromatographic Chameleonicity Quantifier to Design Orally Bioavailable Beyond-Rule-of-5 Drugs. Journal of Medicinal Chemistry 66 (2023) 10681-10693. https://doi.org/10.1021/acs.jmedchem.3c00823.

V. Poongavanam, L.H.E. Wieske, S. Peintner, M. Erdélyi, J. Kihlberg. Molecular chameleons in drug discovery. Nature Reviews Chemistry 8 (2024) 45-60. https://doi.org/10.1038/s41570-023-00563-1.

D. Garcia Jimenez, M. Rossi Sebastiano, M. Vallaro, G. Ermondi, G. Caron. IMHB-Mediated Chameleonicity in Drug Design: A Focus on Structurally Related PROTACs. Journal of Medicinal Chemistry 67 (2024) 11421-11434. https://doi.org/10.1021/acs.jmedchem.4c01200.

X. Jia, X. Han. Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomedicine and Pharmacotherapy 158 (2023) 114112. https://doi.org/10.1016/j.biopha.2022.114112.

E.P. Hamilton, H. Han, A. Schott, A. Tan, R. Nanda, D. Jurić, N. Hunter, P. Munster, B. Fang, G. Zahrah, J. Ranciato, R. Gedrich, E. Zhi, Y. Zhang, W. Tan, C. Mather, J. Perkins, S. Anderson, S.A. Hurvitz. 390P Vepdegestrant, a proteolysis targeting chimera (PROTAC) estrogen receptor (ER) degrader, in ER+/human epidermal growth factor receptor 2 (HER2)- advanced breast cancer: Update of dose escalation results from a phase I/II trial. Annals of Oncology 34 (2023) S344. https://doi.org/10.1016/j.annonc.2023.09.567.

Y. He, R. Koch, V. Budamagunta, P. Zhang, X. Zhang, S. Khan, D. Thummuri, Y.T. Ortiz, X. Zhang, D. Lv, J.S. Wiegand, W. Li, A.C. Palmer, G. Zheng, D.M. Weinstock, D. Zhou. DT2216 - A Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. Journal of Hematology & Oncology 13 (2020). https://doi.org/10.1186/s13045-020-00928-9.

G. Apprato, V. Poongavanam, D.G. Jimenez, Y. Atilaw, M. Erdelyi, G. Ermondi, G. Caron, J. Kihlberg. Exploring the chemical space of orally bioavailable PROTACs. Drug Discovery Today 29 (2024) 103917. https://doi.org/10.1016/j.drudis.2024.103917.

K.R. Hornberger, E.M.V. Araujo. Physicochemical Property Determinants of Oral Absorption for PROTAC Protein Degraders. Journal of Medicinal Chemistry 66 (2023) 8281-8287. https://doi.org/10.1021/acs.jmedchem.3c00740.

G. Ermondi, D.G. Jimenez, M. Rossi Sebastiano, J. Kihlberg, G. Caron. Conformational Sampling Deciphers the Chameleonic Properties of a VHL-Based Degrader. Pharmaceutics 15 (2023) 272. https://doi.org/10.3390/pharmaceutics15010272.

Downloads

Published

27-08-2024 — Updated on 27-08-2024

How to Cite

Garcia Jimenez, D., Vallaro, M., Vitagliano, L., Lopez Lopez, L., Apprato, G., Ermondi, G., & Caron, G. (2024). Molecular properties, including chameleonicity, as essential tools for designing the next generation of oral beyond rule of five drugs. ADMET and DMPK, 12(5), 721–736. https://doi.org/10.5599/admet.2334

Issue

Section

Original Scientific Articles

Funding data