Predicting the acute aquatic toxicity of organic UV filters used in cosmetic formulations

Authors

  • Chrysanthos Stergiopoulos Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou 157 80, Athens, Greece https://orcid.org/0000-0001-6002-4870
  • Fotios Tsopelas Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou 157 80, Athens, Greece https://orcid.org/0000-0001-6917-2028
  • Maria Ochsenkühn-Petropoulou Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou 157 80, Athens, Greece https://orcid.org/0000-0001-8761-8468
  • Klara Valko Business & Technology Centre, Bessemer Drive, Stevenage, Herts, SG1 2DX, United Kingdom https://orcid.org/0000-0003-4605-2941

DOI:

https://doi.org/10.5599/admet.2364

Keywords:

UV filters, aquatic toxicity, phospholipid binding, IAM chromatography, octanol-water partition coefficient, environmental risk assessment
Graphical Abstract

Abstract

Background and purpose: Organic UV filters are commonly used in sunscreen and cosmetic formulations to protect against harmful UV radiation. However, concerns have emerged over their potential toxic effects on aquatic organisms. This study aims to investigate the acute aquatic toxicity of 13 organic UV filters and determine whether phospholipid binding, measured through biomimetic chromatographic methods, is a better predictor of toxicity than the traditionally used octanol-water partition coefficient (log P). Experimental approach: The chromatographic retention of the 13 UV filters was measured on an immobilized artificial membrane (IAM) stationary phase to assess phospholipid binding. These measurements were then applied to previously established predictive models, originally developed for pharmaceutical compounds, to estimate acute aquatic toxicity endpoints of 48-hour LC50 for fish and the 48-hour EC50 (immobilization) for Daphnia magna. Key results: Phospholipid binding was found to be a more reliable predictor of the acute aquatic toxicity of UV filters compared to log P. The toxicity was primarily driven by lipophilicity and charge, with negatively charged compounds exhibiting lower toxicity. Conclusion: The study demonstrates that phospholipid binding is a better descriptor of UV filter toxicity than log P, providing a more accurate method for predicting the environmental risk of these compounds. This insight can guide the development of more environmentally friendly sunscreens by reducing the use of highly lipophilic and positively charged compounds, thus lowering their aquatic toxicity.

Downloads

Download data is not yet available.

References

M. Welch, P. Chang, M. F.Taylor. Photoaging Photography: Mothers’ Attitudes Toward Adopting Skin-Protective Measures Pre- and Post-Viewing Photoaged Images of Their and Their Child’s Facial Sun Damage. SAGE Open 6(4) (2016). https://doi.org/10.1177/2158244016672906

B.A. Gilchrest. A review of skin ageing and its medical therapy. Br. J. Dermatol. 135(6) (1996) 867-875. https://doi.org/10.1046/j.1365-2133.1996.d01-1088.x

S. Wahie, J.J. Lloyd, P.M. Farr. Sunscreen ingredients and labelling: A survey of products available in the UK. Clin. Exp. Dermatol. 32(4) (2007) 359-364. https://doi.org/10.1111/j.1365-2230.2007.02404.x

D.R. Sambandan, D. Ratner. Sunscreens: An overview and update. J. Am. Acad. Dermatol. 64(4) (2011) 748-758. https://doi.org/10.1016/j.jaad.2010.01.005

S.Q. Wang, H.W. Lim. Current status of the sunscreen regulation in the United States: 2011 Food and Drug Administration’s final rule on labeling and effectiveness testing. J. Am. Acad. Dermatol. 65(4) (2011) 863-869. https://doi.org/10.1016/j.jaad.2011.07.025

B.L. Diffey. Sources and measurement of ultraviolet radiation. Methods 28(1) (2002) 4-13. https://doi.org/10.1016/S1046-2023(02)00204-9

L.L. Guan, H.W. Lim, T.F. Mohammad. Sunscreens and Photoaging: A Review of Current Literature. Am. J. Clin. Dermatol. 22(6) (2021) 819-828. https://doi.org/10.1007/s40257-021-00632-5

N. Sabzevari, S. Qiblawi, S.A. Norton, D. Fivenson. Sunscreens: UV filters to protect us: Part 1: Changing regulations and choices for optimal sun protection. Int. J. Women’s Dermatology 7(1) (2021) 28-44. https://doi.org/10.1016/j.ijwd.2020.05.017

W. Li, Y. Ma, C. Guo, W. Hu, K. Liu, Y. Wang, T. Zhu. Occurrence and behavior of four of the most used sunscreen UV filters in a wastewater reclamation plant. Water Res. 41(15) (2007). https://doi.org/10.1016/j.watres.2007.05.039

C.L. Mitchelmore, E.E. Burns, A. Conway, A. Heyes, I.A. Davies. A Critical Review of Organic Ultraviolet Filter Exposure , Hazard , and Risk to Corals. Environ. Toxicol. Chem. 40(4) (2021) 967-988. https://doi.org/10.1002/etc.4948

I.B. Miller, S. Pawlowski, M.Y. Kellermann, M. Petersen-Thiery, M. Moeller, S. Nietzer, P.J. Schupp. Toxic effects of UV filters from sunscreens on coral reefs revisited : regulatory aspects for "reef safe" products. Environ. Sci. Eur. 33(74) (2021). https://doi.org/10.1186/s12302-021-00515-w

B. Kwon, K. Choi. Occurrence of major organic UV filters in aquatic environments and their endocrine disruption potentials: A mini-review. Integr. Environ. Assess. Manag. 17(5) (2021) 940-950. https://doi.org/10.1002/ieam.4449

D. Kaiser, O. Wappelhorst, M. Oetken, J. Oehlman. Occurrence of widely used organic UV filters in lake and river sediments. Environ. Chem. 9(2) (2012) 139-147. https://doi.org/10.1071/EN11076

S. Pawlowski, M. Petersen-Thiery. Sustainable Sunscreens: A Challenge Between Performance, Animal Testing Ban, and Human and Environmental Safety. In: A. Tovar-Sánchez, D. Sánchez-Quiles, J. Blasco (eds.), Sunscreens in Coastal Ecosystems: Occurrence, Behavior, Effect and Risk. Hdb. Env. Chem. 94 (2020) 185-208. https://doi.org/10.1007/698_2019_444

M.E. Balmer, H.R. Buser, M.D. Müller, T. Poiger. Occurrence of Some Organic UV Filters in Wastewater, in Surface Waters, and in Fish from Swiss Lakes. Environ. Sci. Technol. 39(4) (2005) 953-962. https://doi.org/10.1021/es040055r

K. Fent, P.Y. Kunz, E. Gomez. UV Filters in the Aquatic Environment Induce Hormonal Effects and Affect Fertility and Reproduction in Fish. Chimia 62(5) (2008) 368-375. https://doi.org/10.2533/chimia.2008.368

T. He, M.M.P. Tsui, C.J. Tan, C.Y. Ma, S.K.F. Yiu, L.H. Wang, T.H. Chen, T.Y. Fan, P.K.S. Lam, M. Burkhardt-Murphy. Toxicological effects of two organic ultraviolet filters and a related commercial sunscreen product in adult corals. Environ. Pollut. 245 (2019) 462-471. https://doi.org/10.1016/j.envpol.2018.11.029

M.M.P. Tsui, H.W. Leung, Tak-Cheung Wai, N. Yamashita, S. Taniyasu, W. Liu, P.K.S. Lam, M.B. Murphy. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries. Water Res. 67 (2014) 55-65. https://doi.org/10.1016/j.watres.2014.09.013

D. Sánchez-Quiles, A. Tovar-Sánchez. Are sunscreens a new environmental risk associated with coastal tourism?. Environ. Int. 83 (2015) 158-170. https://doi.org/10.1016/j.envint.2015.06.007

C. Stergiopoulos, F. Tsopelas, K. Valko, M. Ochsenkühn-Petropoulou. The use of biomimetic chromatography to predict acute aquatic toxicity of pharmaceutical compounds. Toxicol. Environ. Chem. 104(1) (2021) 1-19. https://doi.org/10.1080/02772248.2021.2005065

K.L. Valko. Biomimetic chromatography—A novel application of the chromatographic principles. Anal. Sci. Adv. 3 (2022) 146-153, 2022. https://doi.org/10.1002/ansa.202200004

F. Tsopelas, C. Stergiopoulos, L.A. Tsakanika, M. Ochsenkühn-Petropoulou, A. Tsantili-Kakoulidou. The use of immobilized artificial membrane chromatography to predict bioconcentration of pharmaceutical compounds. Ecotoxicol. Environ. Saf. 139 (2017) 150-157. https://doi.org/10.1016/j.ecoenv.2017.01.028

C. Stergiopoulos, F. Tsopelas, K. Valko. Prediction of hERG inhibition of drug discovery compounds using biomimetic HPLC measurements. ADMET & DMPK 9(3) (2021) 191-207. https://doi.org/10.5599/admet.995

European Chemicals Agency, Search for chemicals (2024). https://echa.europa.eu/information-on-chemicals

K. Valko, C.M. Du, C.D. Bevan, D.P. Reynolds, M.H. Abraham. Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: Comparison with other lipophilicity measures. J. Pharm. Sci. 89(8) (2000) 1085-1096. https://doi.org/10.1002/1520-6017(200008)89:8<1085::AID-JPS13>3.0.CO;2-N

US EPA. Estimation Program Interface (EPI) Suite, Version 4.11 (2024). https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411

J.D, Hughes, J. Blagg, D.A. Price, S. Bailey, G.A. Decrescenzo, R.V. Devraj, E. Ellsworth, Y.M. Fobian, M.E. Gibbs, R.W. Gilles, N. Greene, E. Huang, T. Krieger-Burke, J. Loesel, T. Wager, L. Whiteley, Y. Zhang. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic Med. Chem. Lett. 18(17) (2008) 4872-4875. https://doi.org/10.1016/j.bmcl.2008.07.071

F. Tsopelas, C. Giaginis, A. Tsantili-Kakoulidou. Lipophilicity and biomimetic properties to support drug discovery. Expert Opin. Drug Discov. 12(9) (2017) 885-896. https://doi.org/10.1080/17460441.2017.1344210

A. Tsantili-Kakoulidou. How can we better realize the potential of immobilized artificial membrane chromatography in drug discovery and development?. Expert Opin. Drug Discov. 15(3) (2020) 273-276. https://doi.org/10.1080/17460441.2020.1718101

F. Barbato, G.D. Martino, L. Grumetto, M.I. La Rotonda. Prediction of drug-membrane interactions by IAM-HPLC: Effects of different phospholipid stationary phases on the partition of bases. Eur. J. Pharm. Sci. 22(4) (2004) 261-269. https://doi.org/10.1016/j.ejps.2004.03.019

K. Valko, S. Rava, S. Bunally, S. Anderson. Revisiting the application of immobilized artificial membrane (IAM) chromatography to estimate in vivo distribution properties of drug discovery compounds based on the model of marketed drugs. ADMET DMPK 8(1) (2020) 78-97. https://doi.org/10.5599/admet.757

K.L. Valkó. Lipophilicity and biomimetic properties measured by HPLC to support drug discovery. J. Pharm. Biomed. Anal. 130 (2016) 35-54. https://doi.org/10.1016/j.jpba.2016.04.009

F. Hollósy, K. Valkó, A. Hersey, S. Nunhuck, G. Kéri, C. Bevan. Estimation of volume of distribution in humans from high throughput HPLC-based measurements of human serum albumin binding and immobilized artificial membrane partitioning. J. Med. Chem. 49(24) (2006) 6958-6971. https://doi.org/10.1021/jm050957i

K.L. Valko. Application of biomimetic HPLC to estimate in vivo behavior of early drug discovery compounds. Futur. Drug Discov. 1(1) (2019). https://doi.org/10.4155/fdd-2019-0004

T.I. Netzeva, A. Worth, T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D. Roberts, T. Schultz, D.W. Stanton, J.J.M. van de Sandt, W. Tong, G. Veith, C. Yang. Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. ATLA Altern. to Lab. Anim. 33(2) (2005) 155-173. https://doi.org/10.1177/026119290503300209

OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. OECD Ser. Test. Assess. 69 (2014). https://doi.org/10.1787/9789264085442-en

W. Kenneth, S. Willem. Acute Toxicity and Lethal Body Burden of Endosulfan in Tilapia ( Oreochromis niloticus (L)). Environ. Pollut. 2 (2010) 21-26. https://doi.org/10.2174/1876397901002010021

M. Dellali, A. Douggui, A.H. Harrath, L. Mansour, S. Alwasel, H. Beyrem, T. Gyedu-Ababio, M. Rohal-Lupher F. Boufahja. Acute toxicity and biomarker responses in Gammarus locusta amphipods exposed to copper, cadmium, and the organochlorine insecticide dieldrin. Environ. Sci. Pollut. Res. 28 (2021) 36523-36534. https://doi.org/10.1007/s11356-021-13158-4

M.M. McConville, J.P. Roberts, M. Boulais, B. Woodall, J.D. Butler, A.D. Redman, T.F. Parkerton, W.R. Arnold, J. Guyomarch, S. LeFloch, J. Bytingsvik, L. Camus, A. Volety, S.M. Brander. The sensitivity of a deep-sea fish species (Anoplopoma fimbria) to oil-associated aromatic compounds, dispersant, and Alaskan North Slope crude oil. Environ. Toxicol. Chem. 37(8) (2018) 2210-2221. https://doi.org/10.1002/etc.4165

J. Hermens, H. Canton, P. Janssen, R. De Jong. Quantitative structure-activity relationships and toxicity studies of mixtures of chemicals with anaesthetic potency: Acute lethal and sublethal toxicity to Daphnia magna. Aquat. Toxicol. 5(2) (1984) 143-154. https://doi.org/10.1016/0166-445X(84)90005-5

A.R. Katritzky, S.H. Slavov, I.S. Stoyanova-Slavova, I. Kahn, M. Karelson. Quantitative structure-activity relationship (QSAR) modeling of EC50 of aquatic toxicities for daphnia magna. J. Toxicol. Environ. Heal. 72(19) (2009) 1181-1190. https://doi.org/10.1080/15287390903091863

J.M. Pallicer, M. Rosés, C. Ràfols, E. Bosch, R. Pascual, A. Port. Evaluation of log Po/w values of drugs from some molecular structure calculation software. ADMET & DMPK 2(2) (2014) 107-114. https://doi.org/10.5599/admet.2.2.45

F. Tsopelas, C. Stergiopoulos, A. Tsantili-Kakoulidou. Immobilized artificial membrane chromatography: From medicinal chemistry to environmental sciences. ADMET & DMPK 6(3) (2018) 225-241. https://doi.org/10.5599/admet.553

UNECE. Globally Harmonized System and Classification of Chemicals (GHS) (2011). https://unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev04/English/ST-SG-AC10-30-Rev4e.pdf

Published

11-09-2024 — Updated on 11-09-2024

How to Cite

Stergiopoulos, C., Tsopelas, F., Ochsenkühn-Petropoulou, M., & Valko, K. (2024). Predicting the acute aquatic toxicity of organic UV filters used in cosmetic formulations. ADMET and DMPK, 12(5), 781–796. https://doi.org/10.5599/admet.2364

Issue

Section

Original Scientific Articles