Antimicrobial and ADME properties of methoxylated, methylated and nitrated 2-hydroxynaphthalene-1 carboxanilides
Original scientific article
DOI:
https://doi.org/10.5599/admet.2642Keywords:
Lipophilicity, antibacterial activity, antimycobacterial activity, cytotoxicityAbstract
Background and purpose: Many new compounds are being prepared to overcome the problem of increasing microbial resistance and the increasing number of infections. Experimental approach: This study includes a series of twenty-seven mono-, di- and trisubstituted 2-hydroxynaphthalene-1-carboxanilides designed as multitarget agents. The compounds are substituted with methoxy, methyl, and nitro groups, as well as additionally with chlorine, bromine, and trifluoromethyl at various positions. All the compounds were evaluated for antibacterial activities against Gram-positive and Gram-negative bacteria and mycobacteria. Cytotoxicity on human cells was also tested. Key results: Three compounds showed activity comparable to clinically used drugs. N-(3,5-Dimethylphenyl)-2-hydroxynaphthalene-1-carboxamide (13) showed only anti¬sta¬phylococcal activity (minimum inhibitory concentration (MIC) = 54.9 µM); 2-hydroxy-N-[2-methyl-5-(tri¬fluoro¬methyl)phenyl]naphthalene-1-carboxamide (22) and 2-hydroxy-N-[4-nitro-3-(trifluoromethyl)phe¬nyl]na¬phtha¬lene-1-carboxamide (27) were active across the entire spectrum of tested bacteria/mycobacteria, both against the sensitive set and against resistant isolates (MICs range 0.3 to 92.6 µM). Compound 22 was even active against E. coli (MIC = 23.2 µM). The active agents showed no in vitro cytotoxicity up to a concentration of 30 μM. Conclusion: Compounds with trifluoromethyl in the meta-anilide position, experimental lipophilicity expressed as log k (logarithm of the capacity factor) in the range of 0.31 to 0.34 and calculated electron σ parameter for the anilide substituent higher than 0.59 were effective. The investigated compounds meet the definition of Michael acceptors. Based on ADME screening, the investigated compounds 13, 22 and 27 should have suitable physico¬chemical parameters for good bioavailability in the organism. Therefore, these are promising agents for further study.
Downloads
References
WHO Bacterial Priority Pathogens List, 2024. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 08 January 2025).
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399 (2022) 629-655. https://doi.org/10.1016/s0140-6736(21)02724-0
M. Oliveira, W. Antunes, S. Mota, A. Madureira-Carvalho, R.J. Dinis-Oliveira, D. Dias da Silva. An overview of the recent advances in antimicrobial resistance. Microorganisms 12 (2024) 1920. https://doi.org/10.3390/microorganisms12091920
J. Jampilek. Design and discovery of new antibacterial agents: advances, perspectives, challenges. Current Medicinal Chemistry 25 (2018) 4972-5006. https://doi.org/10.2174/0929867324666170918122633
M.A. Farha, M.M. Tu, E.D. Brown. Important challenges to finding new leads for new antibiotics. Current Opinion in Microbiology 83 (2025) 102562. https://doi.org/10.1016/j.mib.2024.102562
M. Miethke, M. Pieroni, T. Weber, M. Brönstrup, P. Hammann, L. Halby, P.B. Arimondo, P. Glaser, B. Aigle, H.B. Bode, R. Moreira, Y. Li, A. Luzhetskyy, M.H. Medema, J.L. Pernodet, M. Stadler, J.R. Tormo, O. Genilloud, A.W. Truman, K.J. Weissman, E. Takano, S. Sabatini, E. Stegmann, H. Brötz-Oesterhelt, W. Wohlleben, M. Seemann, M. Empting, A.K.H. Hirsch, B. Loretz, C.M. Lehr, A. Titz, J. Herrmann, T. Jaeger, S. Alt, T. Hesterkamp, M. Winterhalter, A. Schiefer, K. Pfarr, A. Hoerauf, H. Graz, M. Graz, M. Lindvall, S. Ramurthy, A. Karlén, M. van Dongen, H. Petkovic, A. Keller, F. Peyrane, S. Donadio, L. Fraisse, L.J.V. Piddock, I.H. Gilbert, H.E. Moser, R. Müller. Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry 5 (2021) 726-749. https://doi.org/10.1038/s41570-021-00313-1
H. Shim Three innovations of next-generation antibiotics: Evolvability, specificity, and non-immunogenicity. Antibiotics 12 (2023) 204. https://doi.org/10.3390/antibiotics12020204
T. Yang, X. Sui, B. Yu, Y. Shen, H. Cong. Recent advances in the rational drug design based on multitarget ligands. Current Medicinal Chemistry 27 (2020) 4720–4740. https://doi.org/10.2174/0929867327666200102120652
M.A. Cook, G.D. Wright. The past, present, and future of antibiotics. Science Translational Medicine 14 (2022) eabo7793. https://www.science.org/doi/10.1126/scitranslmed.abo7793
N. Maheshwari, L.S. Jermiin, C. Cotroneo, S.V. Gordon, D.C. Shields. Insights into the production and evolution of lantibiotics from a computational analysis of peptides associated with the lanthipeptide cyclase domain. Royal Society Open Science 11 (2024) 240491. https://doi.org/10.1098/rsos.240491
M. Zimina, O. Babich, A. Prosekov, S. Sukhikh, S. Ivanova, M. Shevchenko, S. Noskova. Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics 9 (2020) 553. https://doi.org/10.3390/antibiotics9090553
S.L. Regen. Membrane-disrupting molecules as therapeutic agents: A cautionary note. JACS Au 1 (2020) 3-7. https://doi.org/10.1021/jacsau.0c00037
L. Lin, J. Chi, Y. Yan, R. Luo, X. Feng, Y. Zheng, D. Xian, X. Li, G. Quan, D. Liu, C. Wu, C. Lu, X. Pan. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharmaceutica Sinica B 11 (2021) 2609-2644. https://doi.org/10.1016/j.apsb.2021.07.014
A.H. Benfield, S.T. Henriques. Mode-of-action of antimicrobial peptides: membrane disruption vs. intracellular mechanisms. Frontiers in Medical Technology 2 (2020) 610997. https://doi.org/10.3389/fmedt.2020.610997
M. Garvey. Antimicrobial Peptides demonstrate activity against resistant bacterial pathogens. Infectious Disease Reports 15 (2023) 454-469. https://doi.org/10.3390/idr15040046
G. Chakrapani, M. Zare, S. Ramakrishna. Current trends and definitions in high-performance antimicrobial strategies. Current Opinion in Biomedical Engineering 23 (2022) 100407. https://doi.org/10.1016/j.cobme.2022.100407
A. Iaconis, L.M. De Plano, A. Caccamo, D. Franco, S. Conoci. Anti-biofilm strategies: A focused review on innovative approaches. Microorganisms 12 (2024) 639. https://doi.org/10.3390/microorganisms12040639
F. Tabuchi, K. Mikami, M. Miyauchi, K. Sekimizu, A. Miyashita. Discovery of new AMR drugs targeting modulators of antimicrobial activity using in vivo silkworm screening systems. The Journal of Antibiotics 78 (2025) 69–77. https://doi.org/10.1038/s41429-024-00788-2
B. Lorente-Torres, J. Llano-Verdeja, P. Castanera, H.A. Ferrero, S. Fernandez-Martinez, F. Javadimarand, L.M. Mateos, M. Letek, A. Mourenza. Innovative strategies in drug repurposing to tackle intracellular bacterial pathogens. Antibiotics 13 (2024) 834. https://doi.org/10.3390/antibiotics13090834
M. Abavisani, A. Khoshrou, S. Eshaghian, S. Karav, A. Sahebkar. Overcoming antibiotic resistance: the potential and pitfalls of drug repurposing. Journal of Drug Targeting (2025). https://doi.org/10.1080/1061186X.2024.2424895
F. Moradi, A. Ghaedi, Z. Fooladfar, A. Bazrgar. Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and antibacterial biofilm properties: A systematic review. Heliyon 9 (2023) e22105. https://doi.org/10.1016/j.heliyon.2023.e22105
C. Christ, A. Waldl, Y. Liu, L. Johnson, V. Auer, O. Cardozo, P. M. A. Farias, A. C. D. S. Andrade, A. Stingl, M. Himly, B. Punz, S. Li, G. Wang and Y. Li. Nano-scaled advanced materials for antimicrobial applications – mechanistic insight, functional performance measures, and potentials towards sustainability and circularity. Environmental Science: Nano (2025). https://doi.org/10.1039/D4EN00798K
A. Talevi. Multitarget pharmacology: Possibilities and limitations of the "skeleton key approach" from a medicinal chemist perspective. Frontiers in Pharmacology 6 (2015) 205. https://doi.org/10.3389/fphar.2015.00205
D.A. Gray, M. Wenzel. Multitarget approaches against multiresistant superbugs. ACS Infectious Diseases 6 (2020) 1346-1365. https://doi.org/10.1021/acsinfecdis.0c00001
J. Feng, Y. Zheng, W. Ma, A. Ihsan, H. Hao, G. Cheng, X. Wang. Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance. Pharmacology & Therapeutics 252 (2023) 108550. https://doi.org/10.1016/j.pharmthera.2023.108550
S. Lin, Y. Chen, Y. Sun, G. Yu, X. Liao, Q. Yang. Evaluation of multitarget iridium(III)-based metallodrugs in combating antimicrobial resistance and infections caused by Staphylococcus aureus. RSC Advances 14 (2024) 16194-16206. https://doi.org/10.1039/D4RA02152E
J.B. Bremner. An update review of approaches to multiple action-based antibacterials. Antibiotics 12 (2023) 865. https://doi.org/10.3390/antibiotics12050865
T. Kauerova, M.J. Perez-Perez, P. Kollar. Salicylanilides and Their Anticancer Properties. International Journal of Molecular Sciences 24 (2023) 1728. https://doi.org/10.3390/ijms24021728
G. Stelitano, J.C. Sammartino, L.R. Chiarelli. Multitargeting compounds: A promising strategy to overcome multi-drug resistant tuberculosis. Molecules 25 (2020) 1239. https://doi.org/10.3390/molecules25051239
M. Gargantilla, L. Persoons, T. Kauerova, N. del Rio, D. Daelemans, E.M. Priego, P. Kollar, M.J. Perez-Perez. Hybridization approach to identify salicylanilides as inhibitors of tubulin polymerization and signal transducers and activators of transcription 3 (STAT3). Pharmaceuticals 15 (2022) 835. https://doi.org/10.3390/ph15070835
J.N. Copp, D. Pletzer, A.S. Brown, J. Van der Heijden, C.M. Miton, R.J. Edgar, M.H. Rich, R.F. Little, E.M. Williams, R.E.W. Hancock, N. Tokuriki, D.F. Ackerley. Mechanistic understanding enables the rational design of salicylanilide combination therapies for gram-negative infections. mBio 11 (2020) e02068-20. https://doi.org/10.1128/mbio.02068-20
T. Yokoyama, M. Mizuguchi, Y. Nabeshima, Y. Nakagawa, T. Okada, N. Toyooka, K. Kusaka. Rafoxanide, a salicylanilide anthelmintic, interacts with human plasma protein transthyretin. The FEBS Journal 290 (2023) 5158-5170. https://doi.org/10.1111/febs.16915
S. Blake, N. Shaabani, L.M. Eubanks, J. Maruyama, J.T. Manning, N. Beutler, S. Paessler, H. Ji, J.R. Teijaro, K.D. Janda. Salicylanilides reduce SARS-CoV-2 replication and suppress induction of inflammatory cytokines in a rodent model. ACS Infectious Diseases 7 (2021) 2229-2237. https://doi.org/10.1021/acsinfecdis.1c00253
I. Kushkevych, P. Kollar, A.L. Ferreira, D. Palma, A. Duarte, M.M. Lopes, M. Bartos, K. Pauk, A. Imram¬ovsky, J. Jampilek. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. Journal of Applied Biomedicine 14 (2016) 125-130. https://doi.org/10.1016/j.jab.2016.01.005
A. Imramovsky, M. Pesko, K. Kralova, M. Vejsova, J. Stolarikova, J. Vinsova, J. Jampilek. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules 16 (2011) 2414-30. https://doi.org/10.3390/molecules16032414
A. Imramovsky, M. Pesko, J.M. Ferriz, K. Kralova, J. Vinsova, J Jampilek. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorganic & Medicinal Chemistry Letters 21 (2011) 4564-4567. https://doi.org/10.1016/j.bmcl.2011.05.118
A. Bak, J. Kos, H. Michnova, T. Gonec, S. Pospisilova, V. Kozik, A. Cizek, A. Smolinski, J. Jampilek. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. International Journal of Molecular Sciences 21 (2020), 6583. https://doi.org/10.3390/ijms21186583
J. Kos, I. Kapustikova, C. Clements, A.I. Gray, J. Jampilek. 3-Hydroxynaphthalene-2-carboxanilides and their antitrypanosomal activity. Monatshefte für Chemie - Chemical Monthly 149 (2018) 887–892. https://doi.org/10.1007/s00706-017-2099-1
T. Kauerova, J. Kos, T. Gonec, J. Jampilek, P. Kollar. Antiproliferative and pro-apoptotic effect of novel nitro-substituted hydroxynaphthanilides on human cancer cell lines. International Journal of Molecular Sciences 17 (2016) 1219. https://doi.org/10.3390/ijms17081219
T. Gonec, P. Bobal, J. Sujan, M. Pesko, J. Guo, K. Kralova, L. Pavlacka, L. Vesely, E. Kreckova, J. Kos, A. Coffey, P. Kollar, A. Imramovsky, L. Placek, J. Jampilek. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules 17 (2012) 613-644. https://doi.org/10.3390/molecules17010613
T. Gonec, J. Kos, E. Nevin, R. Govender, M. Pesko, J. Tengler, I. Kushkevych, V. Stastna, M. Oravec, P. Kollar, J O'Mahony, K Kralova, A Coffey, J. Jampilek. Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides. Molecules 19 (2014) 10386-409. https://doi.org/10.3390/molecules190710386
T. Gonec, D. Pindjakova, L. Vrablova, T. Strharsky, H. Michnova, T. Kauerova, P. Kollar, M. Oravec, I. Jendrzejewska, A. Cizek, J. Jampilek. Antistaphylococcal activities and ADME-related properties of chlorinated arylcarbamoylnaphthalenylcarbamates. Pharmaceuticals 15 (2022) 715. https://doi.org/10.3390/ph15060715
T. Gonec, J. Kos, I. Zadrazilova, M. Pesko, R. Govender, S. Keltosova, B. Chambel, D. Pereira, P. Kollar, A. Imramovsky, J. O´Mahony, A. Coffey, A. Cizek, K. Kralova,; J. Jampilek. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules 18 (2013) 9397-9419. https://doi.org/10.3390/molecules18089397
T. Gonec, J. Kos, I. Zadrazilova, M. Pesko, S. Keltosova, J. Tengler, P. Bobal, P. Kollar, A. Cizek, K. Kralova, J. Jampilek. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorganic and Medicinal Chemistry 21 (2013) 6531-6541. https://doi.org/10.1016/j.bmc.2013.08.030
J. Kos, E. Nevin, M. Soral, I. Kushkevych, T. Gonec, P. Bobal, P. Kollar, A. Coffey, J. O'Mahony, T. Liptaj, K. Kralova, J. Jampilek. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorganic and Medicinal Chemistry 23 (2015) 2035-2043. https://doi.org/10.1016/j.bmc.2015.03.018
D.S. Allgauer, H. Jangra, H. Asahara, Z. Li, Q. Chen, H. Zipse, A.R. Ofial, H. Mayr, Quantification and theoretical analysis of the electrophilicities of Michael acceptors. Journal of the American Chemical Society 139 (2017) 13318–13329. https://doi.org/10.1021/jacs.7b05106
Y. Ma, L. Li, S. He, C. Shang, Y. Sun, N. Liu, T.D. Meek, Y. Wang, L. Shang. Application of dually activated Michael acceptor to the rational design of reversible covalent inhibitor for enterovirus 71 3C protease. Journal of Medicinal Chemistry 62 (2019) 6146–6162. https://doi.org/10.1021/acs.jmedchem.9b00387
K.M. Lee, P. Le, S.A. Sieber, S.M. Hacker. Degrasyn exhibits antibiotic activity against multi-resistant Staphylococcus aureus by modifying several essential cysteines. Chemical Communications 56 (2020) 2929-2932. https://doi.org/10.1039/C9CC09204H
M. Piesche, J. Roos, B. Kühn, J. Fettel, N. Hellmuth, C. Brat, I.V. Maucher, O. Awad, C. Matrone, S.G. Comerma Steffensen, G. Manolikakes, U. Heinicke, K.D. Zacharowski, D. Steinhilber, T.J. Maier. The emerging therapeutic potential of nitro fatty acids and other Michael acceptor-containing drugs for the treatment of inflammation and cancer. Frontiers in Pharmacology 11 (2020) 1297. https://doi.org/10.3389/fphar.2020.01297
S.T. Liang, C. Chen, R.X. Chen, R. Li, W.L. Chen, G.H. Jiang, L.L. Du. Michael acceptor molecules in natural products and their mechanism of action. Frontiers in Pharmacology 13 (2022) 1033003. https://doi.org/10.3389/fphar.2022.1033003
C.M.C. Andres, J.M. Perez de la Lastra, E. Bustamante Munguira, C.A. Juan, E. Perez-Lebena, Michael acceptors as anticancer compounds: Coincidence or causality? International Journal of Molecular Sciences 25 (2024) 6099. https://doi.org/10.3390/ijms25116099
J. Otevrel, Z. Mandelova, M. Pesko, J. Guo, K. Kralova, F. Sersen, M. Vejsova, D.S. Kalinowski, Z. Kovacevic, A. Coffey, J. Csollei, D.R. Richardson, J. Jampilek. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules 15 (2010) 8122-8142. https://doi.org/10.3390/molecules15118122
T. Gonec, S. Pospisilova, T. Kauerova, J. Kos, J. Dohanosova, M. Oravec, P. Kollar, A. Coffey, T. Liptaj, A. Cizek, J. Jampilek. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules 21 (2016) 1068. https://doi.org/10.3390/molecules21081068
H. Michnova, S. Pospisilova, T. Gonec, I. Kapustikova, P. Kollar, V. Kozik, R. Musiol, I. Jendrzejewska, J. Vanco, Z. Travnicek, A. Cizek, A. Bak, J. Jampilek. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: comparative molecular surface analysis. Molecules 24 (2019) 2991. https://doi.org/10.3390/molecules24162991
ACD/Percepta ver. 2012. Advanced Chemistry Development, Inc., Toronto, ON, Canada, 2012. https://www.acdlabs.com/products/percepta-platform/
EZChrom Elite software ver. 3.3.2. Agilent, Santa Clara, CA, USA. https://ezchrom-elite.software.informer.com/3.3/
I. Zadrazilova, S. Pospisilova, K. Pauk, A. Imramovsky, J. Vinsova, A. Cizek, J. Jampilek. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Research International 2015 (2015) 349534. https://doi.org/10.1155/2015/349534.
U. Nubel, J. Dordel, K. Kurt, B. Strommenger, H. Westh, S.K. Shukla, H. Zemlickova, R. Leblois, T. Wirth, T. Jombart, F. Balloux, W. Witte. A Timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLOS Pathogens 6 (2010) e1000855. https://doi.org/10.1371/journal.ppat.1000855
V. Oravcova, L. Zurek, A. Townsend, A.B. Clark, J.C. Ellis, A. Cizek, I. Literak. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environmental Microbiology 16 (2014) 939-949. https://doi.org/10.1111/1462-2920.12213
M.P. Weinstein, J.B. Patel. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A11, 11. edition, Committee for Clinical Laboratory Standards, Wayne, PA, 2018. https://clsi.org/media/1928/m07ed11_sample.pdf
R. Schwalbe, L. Steele-Moore, A.C. Goodwin. Antimicrobial Susceptibility Testing Protocols, CRC Press, Boca Raton, FL, USA, 2007. https://doi.org/10.1201/9781420014495
GraphPad Prism 5.00 software. GraphPadSoftware, San Diego, CA, USA. http://www.graphpad.com
Global Laboratory Standards for a Healthier World. https://clsi.org/ (accessed on 08 January 2025).
H. Zheng, L. Lu, B. Wang, S. Pu, X. Zhang, G. Zhu, W. Shi, L. Zhang, H. Wang, S. Wang, G. Zhao, Y. Zhang. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLOS One 3 (2008) e2375. https://doi.org/10.1371/journal.pone.0002375
D.E. Griffith, T. Aksamit, B.A. Brown-Elliott, A. Catanzaro, C. Daley, F. Gordin, S.M. Holland, R. Horsburgh, G. Huitt, M.F. Iademarco, M. Iseman, K. Olivier, S. Ruoss, C.F. von Reyn, R.J. Wallace, K. Winthrop, ATS Mycobacterial Diseases Subcommittee, American Thoracic Society, Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of non-tuberculous mycobacterial diseases. American Journal of Respiratory and Critical Care Medicine 175 (2007) 367–416. https://doi.org/10.1164/rccm.200604-571ST
NTM Lung Disease. https://www.lung.org/lung-health-diseases/lung-disease-lookup/nontuberculous-mycobacteria/learn-about-nontuberculosis-mycobacteria (accessed on 08 January 2025).
About Non-tuberculous Mycobacteria (NTM) Infections. Available online: https://www.cdc.gov/nontuberculous-mycobacteria/about/index.html (accessed on 08 January 2025).
S.K. Sharma, V. Upadhyay. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian Journal of Medical Research 152 (2020) 185-226. https://doi.org/10.4103/ijmr.ijmr_902_20
R.J. Wallace, D.R. Nash, M. Tsukamura, Z.M. Blacklock, V.A. Silcox. Human disease due to Mycobacterium smegmatis get access arrow. The Journal of Infectious Diseases 158 (1988) 52-59. https://doi.org/10.1093/infdis/158.1.52
C.J. Wang, Y. Song, T. Li, J. Hu, X. Chen, H. Li. Mycobacterium smegmatis skin infection following cosmetic procedures: Report of two cases. Clinical, Cosmetic and Investigational Dermatology 15 (2022) 535-540. https://doi.org/10.2147/CCID.S359010
S.M. Akram, P. Rawla. Mycobacterium kansasii Infection. StatPearls Publishing, Treasure Island, FL, USA, 2025. https://www.ncbi.nlm.nih.gov/sites/books/NBK430906/ (accessed on 08 January 2025).
J. Koirala. Mycobacterium Kansasii Clinical Presentation. Available online: https://emedicine.medscape.com/article/223230-clinical?form=fpf (accessed on 08 January 2025).
C.A. Portela, K.F. Smart, S. Tumanov, G.M. Cook, S.G. Villas-Boas. Global metabolic response of Enterococcus faecalis to oxygen. Journal of Bacteriology 196 (2014) 2012-2022. https://doi.org/10.1128/JB.01354-13
M.S. Gilmore, D.B. Clewell, Y. Ike, N. Shankar. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190432/ (accessed on 08 January 2025).
S. Ramos, V. Silva, M.d.L.E. Dapkevicius, G. Igrejas, P. Poeta. Enterococci, from harmless bacteria to a pathogen. Microorganisms 8 (2020) 1118. https://doi.org/10.3390/microorganisms8081118
M.S. Gilmore, R. Salamzade, E. Selleck, N. Bryan, S.S. Mello, A.L. Manson, A.M. Earl. Genes contributing to the unique biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio 11 (2020) e02962-20. https://doi.org/10.1128/mbio.02962-20
W.Y. Fang, L. Ravindar, K.P. Rakesh, H.M. Manukumar, C.S. Shantharam, N.S. Alharbi, H.L. Qin. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. European Journal of Medicinal Chemistry 173 (2019) 117-153. https://doi.org/10.1016/j.ejmech.2019.03.063
I. Korona-Glowniak, W. Nitek, W. Tejchman, E. Zeslawska. Influence of chlorine and methyl substituents and their position on the antimicrobial activities and crystal structures of 4-methyl-1,6-diphenylpyrimidine-2(1H)-selenone derivatives. Acta Crystallographica Section C: Structural Chemistry 77 (2021) 649-658. https://doi.org/10.1107/S205322962100975X
A. Krawczyk-Lebek, B. Zarowska, T. Janeczko, E. Kostrzewa-Suslow. Antimicrobial activity of chalcones with a chlorine atom and their glycosides. International Journal of Molecular Sciences 25 (2024) 9718. https://doi.org/10.3390/ijms25179718
M. Perz, D. Szymanowska, T. Janeczko, E. Kostrzewa-Suslow. Antimicrobial properties of flavonoid derivatives with bromine, chlorine, and nitro group obtained by chemical synthesis and biotransformation studies. International Journal of Molecular Sciences 25 (2024) 5540. https://doi.org/10.3390/ijms25105540
E.H. Kerns, L. Di. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization; Academic Press, San Diego, CA, USA, 2008.
A. Kruger, V.G. Maltarollo, C. Wrenger, T. Kronenberger. ADME profiling in drug discovery and a new path paved on silica. In Drug Discovery and Development—New Advances, V. Gaitonde, P. Karmakar, A. Trivedi, Eds., IntechOpen, Rijeka, Croatia, 2019. Available online: https://www.intechopen.com/chapters/66969 (accessed on 08 January 2025).
R. Rozakis. What is pharmacokinetics and ADME? Allucent Clinical Research Organization™, 2024. Available online: https://www.allucent.com/resources/blog/what-pharmacokinetics-and-adme (accessed on 08 January 2025).
C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 46 (2001) 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
L.Z. Benet. Solubility-permeability interplay in facilitating the prediction of drug disposition routes, extent of absorption, food effects, brain penetration and drug induced liver injury potential. Journal of Pharmaceutical Sciences 112 (2023) 2326-2331. https://doi.org/10.1016/j.xphs.2023.07.006
G. Schneider. Prediction of Drug-Like Properties. Landes Bioscience, Austin, TX, USA. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6404/ (accessed on 08 January 2025).
D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry 45 (2002) 2615-2623. https://doi.org/10.1021/jm020017n
A. Lopez-Yerena, M. Perez, A. Vallverdu-Queralt, E. Escribano-Ferrer. Insights into the binding of dietary phenolic compounds to human serum albumin and food-drug interactions. Pharmaceutics 12 (2020) 1123. https://doi.org/10.3390/pharmaceutics12111123
C.A. Lipinski. Compound properties and drug quality. In The Practice of Medicinal Chemistry, 3rd ed, C.G. Wermuth, Ed., Academic Press, Burlington, MA, USA, 2008, pp. 481-490.
H. Van de Waterbeemd. In silico models to predict oral absorption. In Comprehensive Medicinal Chemistry II, J.B. Taylor, D.J. Triggle, Eds., Elsevier, Amsterdam, Netherlands, 2007, pp. 669-697.
M. Muehlbacher, G.M. Spitzer, K.R. Liedl, J. Kornhuber. Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. Journal of Computer-Aided Molecular Design 25 (2011) 1095-1106. https://doi.org/10.1007/s10822-011-9478-1
T.S. Carpenter, D.A. Kirshner, E.Y. Lau, S.E. Wong, J.P. Nilmeier, F.C. Lightstone. A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophysical Journal 107 (2014) 630-641. https://doi.org/10.1016/j.bpj.2014.06.024
J. Yadav, M. El Hassani, J. Sodhi, V.M. Lauschke, J.H. Hartman, L.E. Russell. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metabolism Reviews 53 (2021) 207-233. https://doi.org/10.1080/03602532.2021.1922435
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Lucia Vrablova, Tomas Gonec, Tereza Kauerova, Michal Oravec, Izabela Jendrzejewska, Peter Kollar, Alois Cizek, Josef Jampilek

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
Funding data
-
Ministerstvo Školství, Mládeže a Tělovýchovy
Grant numbers LM2023048 -
Agentúra na Podporu Výskumu a Vývoja
Grant numbers APVV-22-0133