The interactions of model cationic drug with newly synthesized starch derivatives

Authors

  • Justyna Kobryń Department of Physical Chemistry and Biophysics, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland https://orcid.org/0000-0002-5241-8906
  • Tomasz Zięba Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw, University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland https://orcid.org/0000-0002-2791-342X
  • Magdalena Rzepczyńska Department of Physical Chemistry and Biophysics, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland https://orcid.org/0009-0006-0686-3810
  • Witold Musial Department of Physical Chemistry and Biophysics, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland https://orcid.org/0000-0001-5695-5998

DOI:

https://doi.org/10.5599/admet.1950

Keywords:

adsorption, interaction, methylene blue, potato starch
Graphical Abstract

Abstract

Background and purpose: The aim of the work was to compare the interactions of three newly synthesized non-toxic starch derivatives, with varied anionic and non-ionic functional groups with methylene blue (MB) as a model cationic drug, and selection of starch derivative with highest affinity to the MB. Experimental approach: The native potato starch (SN), modified via acetylation (SM1), esterification and crosslinking (SM2) and crosslinking (SM3), was evaluated in MB adsorption studies and assessed by FTIR, PXRD, and DSC. Key results: The adsorption of MB on SM2 and SM3 matched the BET isotherm model, which confirmed physisorption on the low-porous surface. In the case of SM1, adsorption took place via electrostatic attraction between the heterogeneous adsorbent surface and the adsorbate, as demonstrated by the Freundlich plot. The FTIR confirmed vibrations assigned to N=C stretching bonds at 1600 cm-1 in the case of MB adsorbed on the SN and SM2. The most intense PXRD peaks belonged to SN and the least to SM2. In the DSC study, the thermal stability via ΔT was assessed, with SM2 of lowest ΔT value (179.8 °C). Conclusion: SM2 presented the best adsorption capacity, followed by SM3 and the weakest SM1. The interactions were confirmed in the adsorption studies and may reflect applications of the modified starches as drug carriers. In the FTIR study, a probable interaction between the OH- groups of SM2 and N+ of MB was revealed. The most amorphous struc­ture was shown for SM2, which was correlated with the lowest thermal stability provided by the DSC study.

Downloads

Download data is not yet available.

References

of apixaban's solubility and dissolution rate by inclusion complex (β-cyclodextrin and hydroxypropyl β-cyclodextrin) and computational calculation of their inclusion complexes. ADMET and DMPK (2023). http://doi.org/10.5599/admet.1885.

J. Wang, Z. Lu, M.G. Wientjes, J.L.S. Au. Delivery of siRNA therapeutics: Barriers and carriers. AAPS Journal 12 (2010) 492-503. http://doi.org/10.1208/s12248-010-9210-4.

N. Marasini, S. Haque, L.M. Kaminskas. Polymer-drug conjugates as inhalable drug delivery systems: A review. Current Opinion in Colloid & Interface Science 31 (2017) 18-29. http://doi.org/10.1016/j.cocis.2017.06.003.

R. Gaspar, R. Duncan. Polymeric carriers: Preclinical safety and the regulatory implications for design and development of polymer therapeutics. Advance Drug Delivery Reviews 61 (2009) 1220-1231. https://doi.org/10.1016/j.addr.2009.06.003.

J. Khan, A. Alexander, Ajazuddin, S. Saraf. Exploring the role of polymeric conjugates toward anti-cancer drug delivery: Current trends and future projections. International Journal of Pharmaceutics 548 (2018) 500-514. http://doi.org/10.1016/j.ijpharm.2018.06.060.

J. Jung, R.D. Arnold, L. Wicker. Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids and Surfaces B: Biointerfaces 104 (2013) 116-121. http://doi.org/10.1016/j.colsurfb.2012.11.042.

M.R. Saboktakin, R. Tabatabaie, A. Maharramov, M.A. Ramazanov. Synthesis and characterization of superparamagnetic chitosan-dextran sulfate hydrogels as nano carriers for colon-specific drug delivery. Carbohydrate Polymers. 81 (2010) 372-376. http://doi.org/10.1016/j.carbpol.2010.02.034.

S. Parveen, A.D. Gupta, R. Prasad. Arabinogalactan protein from Arachis hypogaea: Role as carrier in drug-formulations. International Journal of Pharmaceutics 333 (2007) 79-86. http://doi.org/10.1016/j.ijpharm.2006.10.003.

R.K. Dutta, S. Sahu. Development of oxaliplatin encapsulated in magnetic nanocarriers of pectin as a potential targeted drug delivery for cancer therapy. Research in Pharmaceutical Sciences 2 (2012) 38-45. http://doi.org/10.1016/j.rinphs.2012.05.001.

B. Patani, O. Akin-Ajani, A. Kumaran, O. Odeku. Irvingia gabonensis (O’Rorke) Bail polymer matrix system for controlled drug delivery. Polymers in Medicine 52 (2022). http://doi.org/10.17219/pim/153521.

M. Schoebitz, , C. Ceballos, L. Ciampi. Effect of immobilized phosphate solubilizing bacteria on wheat growth and phosphate uptake. Journal of Soil Science and Plant Nutrition 13(1) (2013) 1-10. https://doi.org/10.4067/s0718-95162013005000001.

S. Pandey, R. Malviya, P. Sharma. Applicability, Commercial Utility and Recent Patents on Starch and Starch Derivative as Pharmaceutical Drug Delivery Carrier. Recent Patents on Drug Delivery & Formulation 9 (2015) 249-256. https://doi.org/10.2174/1872211309666150724101454.

N. Singh, D. Chawla, J. Singh. Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chemistry 86 (2004) 601-608. http://doi.org/10.1016/j.foodchem.2003.10.008.

M.A. Odeniyi, J.O. Ayorinde. Effects of Modification and Incorporation Techniques on Disintegrant Properties of Wheat (Triticum Aestivum) Starch in Metronidazole Tablet Formulations. Polymers in Medicine 44 (2014) 147-155. https://polimery.umw.edu.pl/pdf/2014/44/3/147.pdf

P. Utomo, N.M. Nizardo, E. Saepudin. Crosslink modification of tapioca starch with citric acid as a functional food. AIP Conference Proceedings 2242 (2020) 040055. http://doi.org/10.1063/5.0010364.

J. Singh, L. Kaur, O.J. McCarthy. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-A review. Food Hydrocolloids 21 (2007) 1-22. http://doi.org/10.1016/j.foodhyd.2006.02.006.

M. Kapelko-Żeberska, T. Zięba, W. Pietrzak, A. Gryszkin. Effect of citric acid esterification conditions on the properties of the obtained resistant starch. International Journal of Food Science & Technology 51 (2016) 1647-1654. http://doi.org/10.1111/ijfs.13136.

T. Zięba, A. Szumny, M. Kapelko. Properties of retrograded and acetylated starch preparations: Part 1. Structure, susceptibility to amylase, and pasting characteristics. LWT - Food Science and Technology 44 (2011) 1314-1320. http://doi.org/10.1016/J.LWT.2010.12.018.

A. Gryszkin, T. Zięba, M. Kapelko-Żeberska, A. Atraszkiewicz. Hydrothermal modification of wheat starch part 1. Effect of particle size on the viscosity of formed pastes. Journal of Cereal Science 68 (2016) 46-52. http://doi.org/10.1016/j.jcs.2015.10.004.

J. Kobryń, T. Zięba, S.K. Sowa, W. Musiał. Influence of acetylated annealed starch on the release of β-escin from the anionic and non-ionic hydrophilic gels. Pharmaceutics 12 (2020) 84. http://doi.org/10.3390/pharmaceutics12010084.

T. Zięba, A. Wilczak, J. Kobryń, W. Musiał, M. Kapelko-Żeberska, A. Gryszkin, M. Meisel. The annealing of acetylated potato starch with various substitution degrees. Molecules 26 (2021) 2096. http://doi.org/10.3390/molecules26072096.

J. Kobryń, B. Raszewski, T. Zięba, W. Musiał. Modified Potato Starch as a Potential Retardant for Prolonged Release of Lidocaine Hydrochloride from Methylcellulose Hydrophilic Gel. Pharmaceutics 15 (2023) 387, http://doi.org/10.3390/pharmaceutics15020387.

C. Korth, B.C.H. May, F.E. Cohen, S.B. Prusiner. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. PNAS 98 (2001) 9837-9841. http://doi.org/10.1073/pnas.161274798.

M.J. Ohlow, B. Moosmann. Phenothiazine: The seven lives of pharmacology’s first lead structure. Drug Discovery Today 16 (2011) 119-131. http://doi.org/10.1016/j.drudis.2011.01.001.

K. Adam, I. Oswald, I. The hypnotic effects of an antihistamine : promethazine. British Journal of Clinical Pharmacology 22 (1986) 715-717. https://doi.org/10.1111/j.1365-2125.1986.tb02962.x

G.F. Vaughan, D.M. Leiberman, L.C. Cook. Chlorpromazine in psychiatry. The lancet 265 (1955) 1083-1087. http://doi.org/10.1016/S0140-6736(55)90587-0.

R. Tiwari, B. Srivastava, G. Tiwari, A. Rai. Extended release promethazine HCl using acrylic polymers by freeze-drying and spray-drying techniques: formulation considerations. Brazilian Journal of Pharmaceutical Sciences 45 (2009). http://doi.org/10.1590/S1984-82502009000400029.

K. Shiotani, K. Uehata, T. Irie, F. Hirayama, K.Uekama. Characterization of the inclusion mode of β-cyclodextrin sulfate and its effect on the chlorpromazine-induced hemolysis of rabbit erythrocytes. Chemical and Pharmaceutical Bulletin 42 (1994) 2332-2337. https://doi.org/10.1248/cpb.42.2332.

B. Tacheva, A. Zheleva, R. Georgieva, W. Tong, Ch. Gao, M. Karabaliev. Interactions of BSA-nanoparticles with some electroactive drugs. Trakia Journal of Sciences 12(Suppl. 1) (2014) 84-88. http://www.uni-sz.bg/tsj/Vol.%2012%20S1/18.pdf.

F. Banat, S. Al-Asheh, S. Al-Anbar, S. Al-Refaie. Microwave- and acid-treated bentonite as adsorbents of methylene blue from a simulated dye wastewater. Bulletin of Engineering Geology and the Environment 66 (2007) 53-58. http://doi.org/10.1007/s10064-006-0054-1.

E.N. El Qada, S.J. Allen, G.M. Walker. Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chemical Engineering Journal 124 (2006) 103-110. http://doi.org/10.1016/j.cej.2006.08.015.

M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad. Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials 177 (2010) 70-80. http://doi.org/10.1016/j.jhazmat.2009.12.047.

L. Guo, J. Li, H. Li, Y. Zhu, B. Cui. The structure property and adsorption capacity of new enzyme-treated potato and sweet potato starches. International Journal of Biological Macromolecules 144 (2020) 863-873. http://doi.org/10.1016/j.ijbiomac.2019.09.164.

L. Nilsson, B. Bergenståhl. Emulsification and adsorption properties of hydrophobically modified potato and barley starch. Journal of Agricultural and Food Chemistry. 55 (2007) 1469-1474. http://doi.org/10.1021/jf062087z.

E.S. Dragan, D.F.A. Loghin. Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chemical Engineering Journal 234 (2013) 211-222. http://doi.org/10.1016/J.CEJ.2013.08.081.

A. Bhattacharyya, B. Banerjee, S. Ghorai, D. Rana, I. Roy, G. Sarkar, N.R. Saha, S. De, T.K. Ghosh, S. Sadhukhan et al. Development of an auto-phase separable and reusable graphene oxide-potato starch based crosslinked bio-composite adsorbent for removal of methylene blue dye. International Journal of Biological Macromolecules 116 (2018) 1037-1048. http://doi.org/10.1016/j.ijbiomac.2018.05.069.

T.-J. Whang, H.-Y. Huang, M.-T. Hsieh, J.-J. Chen. Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue. International Journal of Molecular Sciences 10 (2009) 4707-4718. http://doi.org/10.3390/ijms10114707.

C. An, S. Peng, Y. Sun. Facile Synthesis of Sunlight-Driven AgCl:Ag Plasmonic Nanophotocatalyst. Advanced Materials 22 (2010) 2570-2574. http://doi.org/10.1002/adma.200904116.

Y. Tang, Z. Jiang, Q. Tay, J. Deng, Y. Lai, D. Gong, Z. Dong, Z. Chen. Visible-light plasmonic photocatalyst anchored on titanate nanotubes: a novel nanohybrid with synergistic effects of adsorption and degradation. RSC Advances 2 (2012) 9406. http://doi.org/10.1039/c2ra21300a.

A. Ebadi, J.S. Soltan Mohammadzadeh, A. Khudiev. What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 15 (2009) 65-73. http://doi.org/10.1007/s10450-009-9151-3.

J. Coates. Interpretation of Infrared Spectra A Practical Approach, in Encyclopedia of Analytical Chemistry, R.A. Meyers, Ed., Wiley Online Library, 2000, pp. 10815-10837. https://doi.org/10.1002/9780470027318.a5606.

O.V. Ovchinnikov, A.V. Evtukhova, T.S. Kondratenko, M.S. Smirnov, V.Y. Khokhlov, O.V. Erina. Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vibrational Spectroscopy 86 (2016) 181-189. http://doi.org/10.1016/j.vibspec.2016.06.016.

S.M.A.S. Keshk, A.G. Al-sehemi. New Composite Based on Starch and Mercerized Cellulose. American Journal of Polymer Science 3 (2013) 46-51. http://article.sapub.org/10.5923.j.ajps.20130303.02.html.

M.G. Lomelí-Ramírez, A.J. Barrios-Guzmán, S. García-Enriquez, J. de Jesús Rivera-Prado, R. Manríquez-González. Chemical and Mechanical Evaluation of Bio-composites Based on Thermoplastic Starch and Wood Particles Prepared by Thermal Compression. BioResources 9 (2014) 2960-2974. http://doi.org/10.15376/biores.9.2.2960-2974.

X. Ma, X. Liu, D.P. Anderson, P.R. Chang. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Food Chemistry 181 (2015) 133-139. http://doi.org/10.1016/j.foodchem.2015.02.089.

W. Ruland. X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallographica 14 (1961) 1180-1185. http://doi.org/10.1107/S0365110X61003429.

P. Ahvenainen, I. Kontro, K. Svedström. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23 (2016) 1073-1086. http://doi.org/10.1007/s10570-016-0881-6.

M.A. Al-Ghouti, R.S. Al-Absi. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Scientific Reports 10 (2020) 15928. http://doi.org/10.1038/s41598-020-72996-3.

P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao. Structural and electrical studies of sodium iodide doped poly(vinyl alcohol) polymer electrolyte films for their application in electrochemical cells. Ionics 13 (2007) 173-178. http://doi.org/10.1007/s11581-007-0102-2.

R.M. Hodge, G.H. Edward, G.P. Simon. Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymers 37 (1996) 1371-1376. http://doi.org/10.1016/0032-3861(96)81134-7.

T. Rager, A. Geoffroy, R. Hilfiker, J.M.D. Storey. The crystalline state of methylene blue: A zoo of hydrates Physical Chemistry Chemical Physics 14 (2012) 8074-8082. http://doi.org/10.1039/c2cp40128b.

A. Farmoudeh, J. Akbari, M. Saeedi, M. Ghasemi, N. Asemi, A. Nokhodchi. Methylene blue-loaded niosome: preparation, physicochemical characterization, and in vivo wound healing assessment. Drug Delivery and Translational Research 10 (2020) 1428-1441. http://doi.org/10.1007/s13346-020-00715-6.

O.S. Omer, M.A. Hussein, B.H.M. Hussein, A. Mgaidi. Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K. Arabian Journal of Chemistry 11 (2018) 615-623. http://doi.org/10.1016/j.arabjc.2017.10.007.

C.A. Angell, J.M. Sare, E.J. Sare. Glass transition temperatures for simple molecular liquids and their binary solutions. Journal of Physical Chemistry 82 (1978) 2622-2629. http://doi.org/10.1021/j100513a016.

L. Taylor, G. Zografi. Sugar − Polymer Hydrogen Bond Interactions in Lyophilized Amorphous Mixtures. Journal of Pharmaceutical Sciences 87(12) (1998) 1615-1621. https://doi.org/10.1021/js9800174.

Q.H. Zhou, M. Li, P. Yang, Y. Gu. Effect of hydrogen bonds on structures and glass transition temperatures of maleimide-isobutene alternating copolymers: Molecular dynamics simulation study. Macromolecular Theory and Simulations 22 (2013) 107-114. https://doi.org/10.1002/mats.201200057.

Y. Liu, B. Bhandari, W. Zhou. Glass transition and enthalpy relaxation of amorphous food saccharides: A review. Journal of Agricultural and Food Chemistry 54 (2006) 5701-5717. http://doi.org/10.1021/jf060188r.

J. Lin, L. Wang. Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Frontiers of Environmental Science & Engineering in China 3 (2009) 320-324. http://doi.org/10.1007/s11783-009-0030-7.

A. Itodo, H. Itodo, M. Gafar. Estimation of Specific Surface Area using Langmuir Isotherm Method. Journal of applied science and environmental management 14 (2011) 141-145. http://doi.org/10.4314/jasem.v14i4.63287.

K.V. Kumar, S. Sivanesan. Prediction of optimum sorption isotherm: Comparison of linear and non-linear method. Journal of Hazardous Materials 126 (2005) 198-201. http://doi.org/10.1016/j.jhazmat.2005.06.007.

S. Azizian, M. Haerifar, J. Basiri-Parsa. Extended geometric method: A simple approach to derive adsorption rate constants of Langmuir-Freundlich kinetics. Chemosphere 68 (2007) 2040-2046. http://doi.org/10.1016/j.chemosphere.2007.02.042.

B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem, A. Addou. Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technology 99 (2008) 8441-8444. http://doi.org/10.1016/j.biortech.2008.02.053.

F. Kallel, F. Chaari, F. Bouaziz, F. Bettaieb, R. Ghorbel, S.E. Chaabouni. Sorption and desorption characteristics for the removal of a toxic dye, methylene blue from aqueous solution by a low cost agricultural by-product. Journal of Molecular Liquids 219 (2016) 279-288. http://doi.org/10.1016/j.molliq.2016.03.024.

T. Janus, J. Piechocki, A. Janus. Acute methemoglobinemia - causes, possible manifestations and treatment. Anaesthesiology & Rescue Medicine 9 (2015) 327-333. https://www.akademiamedycyny.pl/wp-content/uploads/2016/05/201503_AiR_010.pdf (in Polish)

M.A. Rahman, S.M.R. Amin, A.M.S. Alam. Removal of Methylene Blue from Waste Water Using Activated Carbon Prepared from Rice Husk. The Dhaka University Journal of Science 60 (2012) 185-189. http://doi.org/10.3329/dujs.v60i2.11491.

H. Bakhshi, A. Darvishi. Preparation and evaluation of hydrogel composites based on starch-g-PNaMA/eggshell particles as dye biosorbent. Desalination and Water Treatment 57 (2016) 18144-18156. http://doi.org/10.1080/19443994.2015.1087344.

L. Guo, G. Li, J. Liu, Y. Meng, Y. Tang. Adsorptive decolorization of methylene blue by crosslinked porous starch. Carbohydrate Polymers 93 (2013) 374-379. http://doi.org/10.1016/j.carbpol.2012.12.019.

T. Taweekarn, W. Wongniramaikul, C. Boonkanon, C. Phanrit, W. Sriprom, W. Limsakul, W. Towanlong, C. Phawachalotorn, A. Choodum. Starch Biocryogel for Removal of Methylene Blue by Batch Adsorption. Polymers 14 (2022) 5543. http://doi.org/10.3390/polym14245543.

X. Dang, Z. Yu, M. Yang, M.W. Woo, Y. Song, X. Wang, H. Zhang. Sustainable electrochemical synthesis of natural starch-based biomass adsorbent with ultrahigh adsorption capacity for Cr(VI) and dyes removal. Separation and Purification Technology 288 (2022) 120668. http://doi.org/10.1016/j.seppur.2022.120668.

K. Junlapong, P. Maijan, C. Chaibundit, S. Chantarak. Effective adsorption of methylene blue by biodegradable superabsorbent cassava starch-based hydrogel. International Journal of Biological Macromolecules 158 (2020) 258-264. http://doi.org/10.1016/j.ijbiomac.2020.04.247.

L. Chen, Y. Zhu, Y. Cui, R. Dai, Z. Shan, H. Chen. Fabrication of starch-based high-performance adsorptive hydrogels using a novel effective pretreatment and adsorption for cationic methylene blue dye: Behavior and mechanism. Chemical Engineering Journal 405 (2021) 26953. https://doi.org/10.1016/j.cej.2020.126953.

B. Tanhaei, A. Ayati, M. Sillanpää. Magnetic xanthate modified chitosan as an emerging adsorbent for cationic azo dyes removal: Kinetic, thermodynamic and isothermal studies. International Journal of Biological Macromolecules 121 (2019) 1126-1134. https://doi.org/10.1016/j.ijbiomac.2018.10.137.

H. Karaer, Li Kaya. Synthesis, characterization of magnetic chitosan/active charcoal composite and using at the adsorption of methylene blue and reactive blue4. Microporous and Mesoporous Materials 232 (2016) 26-38. https://doi.org/10.1016/j.micromeso.2016.06.006.

H. Alijani, M.H. Beyki, R. Kaveh, Y. Fazli. Rapid biosorption of methylene blue by in situ cellulose-grafted poly 4-hydroxybenzoic acid magnetic nanohybrid: multivariate optimization and isotherm study. Polymer Bulletin 75 (2018) 2167-2180. http://doi.org/10.1007/s00289-017-2148-2.

X. Liu, Y. Zhou, W. Nie, L. Song. Fabrication of hydrogel of hydroxypropyl cellulose ( HPC ) composited with graphene oxide and its application for methylene blue removal. Journal of Materials Science 50 (2015) 6113-6123. http://doi.org/10.1007/s10853-015-9166-y.

K.S.W. Sing. Reporting physisorption data for gas/solid systems. Pure and Applied Chemistry. 54 (1982) 2201-2218. http://doi.org/10.1351/pac198254112201.

C. Cardenas, A.M. Latifi, C. Vallières, S. Marsteau, L. Sigot. Analysis of an industrial adsorption process based on ammo-nia chemisorption: Modeling and simulation. Computers & Chemical Engineering 154 (2021) 107474. http://doi.org/10.1016/j.compchemeng.2021.107474.

A.A. Gordus. Chemical equilibrium: IV. Weak acids and bases. Journal of Chemical Education. 68 (1991) 397-399. http://doi.org/10.1021/ed068p397.

LibreTexts™ chemistry, https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_ Tables/Equilibrium_Constants/E1%3A_Acid_Dissociation_Constants_at_25C (13.09.2023).

Y. Huang, S. Li, J. Chen, X. Zhang, Y. Chen. Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H 3 PO 4 activation: Adsorption capacity, kinetic and isotherm studies. Applied Surface Science 293 (2014) 160-168. http://doi.org/10.1016/j.apsusc.2013.12.123.

A. Golachowski, W. Drożdz, M. Golachowska, M. Kapelko-Zeberska, B. Raszewski. Production and properties of starch citrates—Current research. Foods 9 (2020) 1311. http://doi.org/10.3390/foods9091311.

L. Shen, H. Xu, L. Kong, Y. Yang. Non-Toxic Crosslinking of Starch Using Polycarboxylic Acids: Kinetic Study and Quantitative Correlation of Mechanical Properties and Crosslinking Degrees. Journal of Polymers and the Environment 23 (2015), 23, 588-594. http://doi.org/10.1007/s10924-015-0738-3.

V. Karma, A.D. Gupta, D.K. Yadav, A.A. Singh, M. Verma, H. Singh. Recent Developments in Starch Modification by Organic Acids. Starch 74 (2022) 1-14. http://doi.org/10.1002/star.202200025.

M. Kapelko-Żeberska, T. Zięba, A.V. Singh. Physically and Chemically Modified Starches, in Food and Non-Food Industries Surface Modification of Biopolymers, Vijay Kumar Thakur, Amar Singh Singha, Eds., John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2015, pp 173-193. ISBN 978-1-118-66955-6. http://doi.org/10.1002/9781119044901.

Published

20-09-2023

How to Cite

Kobryń, J., Zięba, T., Rzepczyńska, M., & Musial, W. (2023). The interactions of model cationic drug with newly synthesized starch derivatives. ADMET and DMPK, 11(3), 387–407. https://doi.org/10.5599/admet.1950

Issue

Section

Original Scientific Articles

Funding data