New xanthone and chemical constituents from the aerial parts of Mallotus glomerulatus and their cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells

Original scientific article

Authors

DOI:

https://doi.org/10.5599/admet.2901

Keywords:

cleistanthin A, xanthone, breast cancer, V-ATPase

Abstract

Background and purpose: Breast cancer remains a significant global health burden, especially in low-resource settings where standard therapies are limited. This study aimed to explore Mallotus glomerulatus, a lesser-known Thai medicinal plant, as a potential source of novel anti-breast cancer agents. Experimental approach: A phytochemical investigation of M. glomerulatus resulted in the isolation and structural characterization of a novel xanthone (Compound 1) and cleistanthin A (Compound 10) using UV, IR, NMR, and HRMS techniques. Cytotoxicity of the compounds was evaluated in vitro against MCF-7 (ER-positive) and MDA-MB-231 (triple-negative) breast cancer cell lines, along with HepG2 liver cells. Molecular docking studies were conducted to assess their interaction with vacuolar H+-ATPase (V-ATPase). Key results: Compound 1 demonstrated selective cytotoxicity toward MCF-7 cells, whereas cleistanthin A exhibited potent cytotoxicity against both breast cancer lines, with nanomolar IC50 values and a high selectivity index (>100) for MDA-MB-231 compared to HepG2 cells. Docking analysis revealed favourable binding of both compounds at the a–c subunit interface of V-ATPase, suggesting a mechanism involving proton pump inhibition and lysosomal dysfunction. Conclusion: The findings highlight M. glomerulatus, particularly cleistanthin A, as a promising source of safe and affordable anti-breast cancer compounds with potential therapeutic value. Further studies on the mechanism and in vivo efficacy are warranted.

Downloads

Download data is not yet available.

References

[1] F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel, I. Soerjomataram, A. Jemal. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 74 (2024) 229-263. https://doi.org/10.3322/caac.21834 DOI: https://doi.org/10.3322/caac.21834

[2] J. Chen, F.D.V. Ho, E.J.G. Feliciano, J.F. Wu, K. Magsanoc-Alikpala, E.C. Dee. Trends in female breast cancer among adolescent and young adults in Southeast Asia. Lancet Regional Health Southeast Asia 34 (2025) 100545. https://doi.org/10.1016/j.lansea.2025.100545 DOI: https://doi.org/10.1016/j.lansea.2025.100545

[3] J. Wang, S.G. Wu. Breast Cancer: An Overview of Current Therapeutic Strategies, Challenge, and Perspectives. Breast Cancer: Targets and Therapy 15 (2023) 721-730. https://doi.org/10.2147/bctt.S432526 DOI: https://doi.org/10.2147/BCTT.S432526

[4] M. Gion, C. Saavedra, J. Perez-Garcia, J. Cortes. Oligometastatic Disease: When Stage IV Breast Cancer Could Be "Cured". Cancers (Basel) 14 (2022). https://doi.org/10.3390/cancers14215229 DOI: https://doi.org/10.3390/cancers14215229

[5] T.U. Barbie, M. Golshan. De Novo Stage 4 Metastatic Breast Cancer: A Surgical Disease? Annals of Surgical Oncology 25 (2018) 3109-3111. https://doi.org/10.1245/s10434-018-6664-6 DOI: https://doi.org/10.1245/s10434-018-6664-6

[6] C.H. Barrios, T. Reinert, G. Werutsky. Access to high-cost drugs for advanced breast cancer in Latin America, particularly trastuzumab. Ecancermedicalscience 13 (2019) 898. https://doi.org/10.3332/ecancer.2019.898 DOI: https://doi.org/10.3332/ecancer.2019.898

[7] K. Daoprasert, S. Sangkam, M. Praditkay, K. Khamkhod, P. Suwannamuang. Factors Related to Survival Rate in Breast Cancer Patients Undergoing Treatments at Lampang Cancer Hospital. Journal of The Department of Medical Services 49 (2024) 60-68. https://he02.tci-thaijo.org/index.php/JDMS/article/view/265917

[8] P. Sukpan, K. Kanokwiroon, H. Sriplung, P. Paisarn, S. Sangkhathat. Survival Outcomes in Breast Cancer Patients and Associated Factors in a Border Province of Thailand: A Hospital-based Review. Journal of Health Science and Medical Research 41 (2023) 1-9. https://doi.org/10.31584/jhsmr.2022911 DOI: https://doi.org/10.31584/jhsmr.2022911

[9] P.C.v. Welzen, R.W.J.M.v.d. Ham, K.K.M. Kulju. Mallotusglomerulatus (Euphorbiaceae sensu stricto), a new species: description, pollen and phylogenetic position. Thai Forest Bulletin (Botany) 0 (2014) 173-178. https://li01.tci-thaijo.org/index.php/ThaiForestBulletin/article/view/24387

[10] D.-L. CHEN. Research progress on chemical constituents of plants from Mallotus Lour. and their pharmacological activities. Zhongcaoyao (2014) 2248-2264. https://doi.org/10.7501/j.issn.0253-2670.2014.15.024

[11] I. Tripathi, P. Chaudhary, P. Pandey. Mallotus philippensis: a miracle stick. World Journal of Pharmacceutical Research 6 (2017) 678-687. https://doi.org/10.20959/wjpr20177-8816 DOI: https://doi.org/10.20959/wjpr20177-8816

[12] C. Rivière, V. Nguyen Thi Hong, Q. Tran Hong, G. Chataigné, N. Nguyen Hoai, B. Dejaegher, C. Tistaert, T. Nguyen Thi Kim, Y. Vander Heyden, M. Chau Van, J. Quetin-Leclercq. Mallotus species from Vietnamese mountainous areas: phytochemistry and pharmacological activities. Phytochemistry Reviews 9 (2010) 217-253. https://doi.org/10.1007/s11101-009-9152-6 DOI: https://doi.org/10.1007/s11101-009-9152-6

[13] P.M. Giang, H. Otsuka. New Compounds and Potential Candidates for Drug Discovery from Medicinal Plants of Vietnam. Chemical and Pharmaceutical Bulletin 66 (2018) 493-505. https://doi.org/10.1248/cpb.c17-00628 DOI: https://doi.org/10.1248/cpb.c17-00628

[14] P. Bag, D. Chattopadhyay, H. Mukherjee, D. Ojha, N. Mandal, M.C. Sarkar, T. Chatterjee, G. Das, S. Chakraborti. Anti-herpes virus activities of bioactive fraction and isolated pure constituent of Mallotus peltatus: an ethnomedicine from Andaman Islands. Virology Journal 9 (2012) 98. https://doi.org/10.1186/1743-422X-9-98 DOI: https://doi.org/10.1186/1743-422X-9-98

[15] M. Adhav. Phytochemical screening and antimicrobial activity of Mallotus philippensis Muell. Arg. Journal of Pharmacognosy and Phytochemistry 3 (2015) 188-191. https://www.phytojournal.com/archives/2015.v3.i5.484/phytochemical-screening-and-antimicrobial-activity-of-mallotus-philippensis-muell-arg

[16] V.P. Shelly Rana, Anand Sagar. Antibacterial Activity of Malotus philippensis Fruit Extract. Journal of Medicinal Plants Studies 4 (2016) 104-106. https://www.plantsjournal.com/archives/?year=2016&vol=4&issue=3&part=B&ArticleId=343

[17] M.M. Hasan, N. Uddin, M.R. Hasan, A.F. Islam, M.M. Hossain, A.B. Rahman, M.S. Hossain, I.A. Chowdhury, M.S. Rana. Analgesic and anti-inflammatory activities of leaf extract of Mallotus repandus (Willd.) Muell. Arg. Biomed Research International 2014 (2014) 539807. https://doi.org/10.1155/2014/539807 DOI: https://doi.org/10.1155/2014/539807

[18] P. Sakthidhasan, P. Sathish Kumar, M.B.G. Viswanathan. Cytotoxic potential of bioactive seed proteins from Mallotus philippensis against various cancer cell lines. Applied Nanoscience 13 (2023) 1179-1186. https://doi.org/10.1007/s13204-021-01974-6 DOI: https://doi.org/10.1007/s13204-021-01974-6

[19] P. Laupattarakasem, B. Sripa, C. Hahnvajanawong. Effect of Mallotus repandus onVascular Endothelial and Cholangiocarcinoma Cells Migration. Srinagarind Medical Journal 25 (2010) 201-207. https://li01.tci-thaijo.org/index.php/SRIMEDJ/article/view/12921

[20] ] J.B. Kim, K.-M. Lee, E. Ko, W. Han, J.E. Lee, I. Shin, J.-Y. Bae, S. Kim, D.-Y. Noh. Berberine inhibits growth of the breast cancer cell lines MCF-7 and MDA-MB-231. Planta Medica 74 (2008) 39-42. https://doi.org/10.1055/s-2007-993779 DOI: https://doi.org/10.1055/s-2007-993779

[21] P. Phannasil, C. Akekawatchai, S. Jitrapakdee. MicroRNA expression profiles associated with the metastatic ability of MDA‑MB‑231 breast cancer cells. Oncology Letters 26 (2023) 339. https://doi.org/10.3892/ol.2023.13926 DOI: https://doi.org/10.3892/ol.2023.13926

[22] A.R. Estrada-Pérez, N. Bakalara, J.B. García-Vázquez, M.C. Rosales-Hernández, C. Fernández-Pomares, J. Correa-Basurto. LC–MS Based Lipidomics Depict Phosphatidylethanolamine as Biomarkers of TNBC MDA-MB-231 over nTNBC MCF-7 Cells. International Journal of Molecular Sciences 23 (2022) 12074. https://doi.org/10.3390/ijms232012074 DOI: https://doi.org/10.3390/ijms232012074

[23] M. Franchi, V. Masola, G. Bellin, M. Onisto, K.-A. Karamanos, Z. Piperigkou. Collagen fiber array of peritumoral stroma influences epithelial-to-mesenchymal transition and invasive potential of mammary cancer cells. Journal of Clinical Medicine 8 (2019) 213. https://doi.org/10.3390/jcm8020213 DOI: https://doi.org/10.3390/jcm8020213

[24] M. Yang, W.J. Brackenbury. Membrane potential and cancer progression. Frontiers in Physiology 4 (2013) 185. https://doi.org/10.3389/fphys.2013.00185 DOI: https://doi.org/10.3389/fphys.2013.00185

[25] L. Stransky, K. Cotter, M. Forgac. The function of V-ATPases in cancer. Physiological Reviews 96 (2016) 1071-1091. https://doi.org/10.1152/physrev.00035.2015 DOI: https://doi.org/10.1152/physrev.00035.2015

[26] S.R. Sennoune, K. Bakunts, G.M. Martínez, J.L. Chua-Tuan, Y. Kebir, M.N. Attaya, R. Martínez-Zaguilán. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. American Journal of Physiology-Cell Physiology 286 (2004) C1443-C1452. https://doi.org/10.1152/ajpcell.00407.2003 DOI: https://doi.org/10.1152/ajpcell.00407.2003

[27] A. Hendrix, R. Sormunen, W. Westbroek, K. Lambein, H. Denys, G. Sys, G. Braems, R. Van den Broecke, V. Cocquyt, C. Gespach. Vacuolar H+ ATPase expression and activity is required for Rab27B‐dependent invasive growth and metastasis of breast cancer. International Journal of Cancer 133 (2013) 843-854. https://doi.org/10.1002/ijc.28079 DOI: https://doi.org/10.1002/ijc.28079

[28] K.A. Keon, S. Benlekbir, S.H. Kirsch, R. Müller, J.L. Rubinstein. Cryo-EM of the Yeast VO Complex Reveals Distinct Binding Sites for Macrolide V-ATPase Inhibitors. ACS Chemical Biology 17 (2022) 619-628. https://doi.org/10.1021/acschembio.1c00894 DOI: https://doi.org/10.1021/acschembio.1c00894

[29] A. Wongpan, W. Panvongsa, S. Krobthong, B. Nutho, P. Kanjanasirirat, K. Jearawuttanakul, T. Khumpanied, S. Phlaetita, N. Chabang, B. Munyoo, P. Tuchinda, M. Ponpuak, S. Borwornpinyo, A. Chairoungdua. Cleistanthin A derivative disrupts autophagy and suppresses head and neck squamous cell carcinoma progression via targeted vacuolar ATPase. Scientific Reports 14 (2024) 22582. https://doi.org/10.1038/s41598-024-73186-1 DOI: https://doi.org/10.1038/s41598-024-73186-1

[30] P.A. Ravindranath, S. Forli, D.S. Goodsell, A.J. Olson, M.F. Sanner. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLOS Computational Biology 11 (2015) e1004586. https://doi.org/10.1371/journal.pcbi.1004586 DOI: https://doi.org/10.1371/journal.pcbi.1004586

[31] J. Eberhardt, D. Santos-Martins, A.F. Tillack, S. Forli. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling 61 (2021) 3891-3898. https://doi.org/10.1021/acs.jcim.1c00203 DOI: https://doi.org/10.1021/acs.jcim.1c00203

[32] E.F. Pettersen, T.D. Goddard, C.C. Huang, E.C. Meng, G.S. Couch, T.I. Croll, J.H. Morris, T.E. Ferrin. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science 30 (2021) 70-82. https://doi.org/https://doi.org/10.1002/pro.3943 DOI: https://doi.org/10.1002/pro.3943

[33] G. Ni, S. Yang, J. Yue. Anomalusins A and B, two new ent-rosane diterpenoids from Mallotus anomalus. Journal of Chinese Pharmaceutical Sciences 21 (2012) 421. https://doi.org/10.5246/jcps.2012.05.056 DOI: https://doi.org/10.5246/jcps.2012.05.056

[34] Y. YANG, Z. TANG, S. FENG, R. XU, Q. ZHONG, Y. ZHONG. Studies on chemical constitutions of mallotus anomalus III: The structure of new rosane type diterpenoids. Acta Chimica Sinica 50 (1992) 200. https://sioc-journal.cn/Jwk_hxxb/EN/Y1992/V50/I2/200

[35] P.V. Kiem, C.V. Minh, H.T. Huong, N.H. Nam, J.J. Lee, Y.H. Kim. Pentacyclic triterpenoids from Mallotus apelta. Archives of Pharmacal Research 27 (2004) 1109-1113. https://doi.org/10.1007/BF02975113 DOI: https://doi.org/10.1007/BF02975113

[36] G.F. Sousa, L.P. Duarte, A.F. Alcântara, G.D. Silva, S.A. Vieira-Filho, R.R. Silva, D.M. Oliveira, J.A. Takahashi. New triterpenes from Maytenus robusta: structural elucidation based on NMR experimental data and theoretical calculations. Molecules 17 (2012) 13439-13456. https://doi.org/10.3390/molecules171113439 DOI: https://doi.org/10.3390/molecules171113439

[37] W.F. Tinto, G. Blyden, W.F. Reynolds, S. McLean. Diterpene and anthraquinone constituents of Glycydendron amazonicum. Journal of Natural Products 54 (1991) 1127-1130. https://doi.org/10.1021/np50076a037 DOI: https://doi.org/10.1021/np50076a037

[38] J. Mi, R. Xu, Y. Yang, P. Yang. Studies on circular dichroism of diterpenoids from Mallotus anomalus and Sesquiterpenoid tussilagone. Acta Pharmaceutica Sinica 28 (1993) 105-109. https://europepmc.org/article/med/8328277

[39] M. Tanjung, T.S. Tjahjandarie, M.H. Sentosa. Antioxidant and cytotoxic agent from the rhizomes of Kaempferia pandurata. Asian Pacific Journal of Tropical Disease 3 (2013) 401-404. https://doi.org/10.1016/S2222-1808(13)60091-2 DOI: https://doi.org/10.1016/S2222-1808(13)60091-2

[40] B.-N. Su, E.J. Park, J.S. Vigo, J.G. Graham, F. Cabieses, H.H. Fong, J.M. Pezzuto, A.D. Kinghorn. Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay. Phytochemistry 63 (2003) 335-341. https://doi.org/10.1016/S0031-9422(03)00112-2 DOI: https://doi.org/10.1016/S0031-9422(03)00112-2

[41] P. Rwangabo, M. Claeys, L. Pieters, J. Corthout, D. Vanden Berghe, A. Vlietinck. Umuhengerin, a new antimicrobially active flavonoid from Lantana trifolia. Journal of Natural Products 51 (1988) 966-968. https://doi.org/10.1021/np50059a026 DOI: https://doi.org/10.1021/np50059a026

[42] D. Deka, V. Kumar, C. Prasad, R. Srivastava. Isolation of flavonoids from Oroxylum indicum (Vent.) stem bark and their antioxidant activity using DPPH assay. International Journal of Chemistry and Pharmaceutical Sciences 2 (2014) 783-787. https://www.researchgate.net/publication/280561916_isolation_of_flavonoids_from_oroxylum_indicum_stem_bark_and_their_antioxidant_activity_using_DPPH_assay#fullTextFileContent

[43] A. Anjaneyulu, P.A. Ramaiah, L.R. Row, R. Venkateswarlu, A. Pelter, R. Ward. New lignans from the heartwood of Cleistanthus collinus. Tetrahedron 37 (1981) 3641-3652. https://doi.org/10.1016/S0040-4020(01)98893-3 DOI: https://doi.org/10.1016/S0040-4020(01)98893-3

[44] T. Govindachari, S. Sathe, N. Viswanathan, B. Pai, M. Srinivasan. Chemical constituents of Cleistanthus collinus (Roxb.). Tetrahedron 25 (1969) 2815-2821. https://doi.org/10.1016/0040-4020(69)80025-6 DOI: https://doi.org/10.1016/0040-4020(69)80025-6

[45] U.-J. Youn, Y.-J. Lee, H.-R. Jeon, H.-J. Shin, Y.-M. Son, J.-W. Nam, A.-R. Han, E.-K. Seo. A pyridyl alkaloid and benzoic acid derivatives from the rhizomes of Anemarrhena asphodeloides. Natural Product Sciences 16 (2010) 203-206. https://www.koreascience.kr/article/JAKO201006159732179.view?orgId=anpor

[46] G. Cheng, X. Zeng, X. Cui. Benzoquinone-promoted aerobic oxidative hydroxylation of arylboronic acids in water. Synthesis 46 (2014) 295-300. https://doi.org/10.1055/s-0033-1338571 DOI: https://doi.org/10.1055/s-0033-1338571

[47] G. Indrayanto, G.S. Putra, F. Suhud. Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles of Drug Substances, Excipients and Related Methodology 46 (2021) 273-307. https://doi.org/10.1016/bs.podrm.2020.07.005 DOI: https://doi.org/10.1016/bs.podrm.2020.07.005

[48] K. Jearawuttanakul, P. Khumkhrong, K. Suksen, S. Reabroi, B. Munyoo, P. Tuchinda, S. Borwornpinyo, N. Boonmuen, A. Chairoungdua. Cleistanthin A induces apoptosis and suppresses motility of colorectal cancer cells. European Journal of Pharmacology 889 (2020) 173604. https://doi.org/10.1016/j.ejphar.2020.173604 DOI: https://doi.org/10.1016/j.ejphar.2020.173604

[49] J. Paha, P. Kanjanasirirat, B. Munyoo, P. Tuchinda, N. Suvannang, C. Nantasenamat, K. Boonyarattanakalin, P. Kittakoop, S. Srikor, G. Kongklad, N. Rangkasenee, S. Hongeng, P. Utaisincharoen, S. Borwornpinyo, M. Ponpuak. A novel potent autophagy inhibitor ECDD-S27 targets vacuolar ATPase and inhibits cancer cell survival. Scientific Reports 9 (2019) 9177. https://doi.org/10.1038/s41598-019-45641-x DOI: https://doi.org/10.1038/s41598-019-45641-x

[50] Z. Feng, X. Lu, L. Gan, Q. Zhang, L. Lin. Xanthones, a promising anti-inflammatory scaffold: Structure, activity, and drug likeness analysis. Molecules 25 (2020) 598. https://doi.org/10.3390/molecules25030598 DOI: https://doi.org/10.3390/molecules25030598

[51] Q. Huang, Y. Wang, H. Wu, M. Yuan, C. Zheng, H. Xu. Xanthone glucosides: Isolation, bioactivity and synthesis. Molecules 26 (2021) 5575. https://doi.org/10.3390/molecules26185575 DOI: https://doi.org/10.3390/molecules26185575

[52] L.M. Vieira, A. Kijjoa. Naturally-occurring xanthones: recent developments. Current Medicinal Chemistry 12 (2005) 2413-2446. https://doi.org/10.2174/092986705774370682 DOI: https://doi.org/10.2174/092986705774370682

[53] Y. Ren, E.J.C. De Blanco, J.R. Fuchs, D.D. Soejarto, J.E. Burdette, S.M. Swanson, A.D. Kinghorn. Potential anticancer agents characterized from selected tropical plants. Journal of Natural Products 82 (2019) 657-679. https://doi.org/10.1021/acs.jnatprod.9b00018 DOI: https://doi.org/10.1021/acs.jnatprod.9b00018

[54] X.-H. Xu, Y.-C. Chen, Y.-L. Xu, Z.-L. Feng, Q.-Y. Liu, X. Guo, L.-G. Lin, J.-J. Lu. Garcinone E Blocks Autophagy Through Lysosomal Functional Destruction in Ovarian Cancer Cells. World Journal of Traditional Chinese Medicine 7 (2021) 209-216. https://doi.org/10.4103/wjtcm.wjtcm_83_20 DOI: https://doi.org/10.4103/wjtcm.wjtcm_83_20

[55] T. Karunakaran, G.C. Ee, K.H. Tee, I.S. Ismail, N.H. Zamakshshari, W.M. Peter. Cytotoxic prenylated xanthone and coumarin derivatives from Malaysian Mesua beccariana. Phytochemistry Letters 17 (2016) 131-134. https://doi.org/10.1016/j.phytol.2016.07.026 DOI: https://doi.org/10.1016/j.phytol.2016.07.026

[56] G.A. Mohamed, A.M. Al-Abd, A.M. El-halawany, H.M. Abdallah, S.R.M. Ibrahim. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. Journal of Ethnopharmacology 198 (2017) 302-312. https://doi.org/https://doi.org/10.1016/j.jep.2017.01.030 DOI: https://doi.org/10.1016/j.jep.2017.01.030

[57] T.T.H. Nguyen, Z. Qu, V.T. Nguyen, T.T. Nguyen, T.T.A. Le, S. Chen, S.T. Ninh. Natural Prenylated Xanthones as Potential Inhibitors of PI3k/Akt/mTOR Pathway in Triple Negative Breast Cancer Cells. Planta Medica 88 (2022) 1141-1151. https://doi.org/10.1055/a-1728-5166 DOI: https://doi.org/10.1055/a-1728-5166

[58] Z. Xu, L. Huang, X.H. Chen, X.F. Zhu, X.J. Qian, G.K. Feng, W.J. Lan, H.J. Li. Cytotoxic prenylated xanthones from the pericarps of Garcinia mangostana. Molecules 19 (2014) 1820-1827. https://doi.org/10.3390/molecules19021820 DOI: https://doi.org/10.3390/molecules19021820

[59] R.A. Castanheiro, A.M. Silva, N.A. Campos, M.S. Nascimento, M.M. Pinto. Antitumor Activity of Some Prenylated Xanthones. Pharmaceuticals (Basel) 2 (2009) 33-43. https://doi.org/10.3390/ph2020033 DOI: https://doi.org/10.3390/ph2020033

[60] A. Wongpan, W. Panvongsa, S. Krobthong, B. Nutho, P. Kanjanasirirat, K. Jearawuttanakul, T. Khumpanied, S. Phlaetita, N. Chabang, B. Munyoo, P. Tuchinda, M. Ponpuak, S. Borwornpinyo, A. Chairoungdua. Cleistanthin A derivative disrupts autophagy and suppresses head and neck squamous cell carcinoma progression via targeted vacuolar ATPase. Scientific Reports 14 (2024) 22582. https://doi.org/10.1038/s41598-024-73186-1 DOI: https://doi.org/10.1038/s41598-024-73186-1

[61] H. Li, W.-T. Kang, Y. Zheng, Y. He, R. Zhong, S. Fang, W. Wen, S. Liu, S. Lin. Development of xanthone derivatives as effective broad-spectrum antimicrobials: Disrupting cell wall and inhibiting DNA synthesis. Science Advances 11 (2025) eadt4723. https://doi.org/doi:10.1126/sciadv.adt4723 DOI: https://doi.org/10.1126/sciadv.adt4723

[62] M. Pinto, M. Sousa, M. Nascimento. Xanthone derivatives: new insights in biological activities. Current Medicinal Chemistry 12 (2005) 2517-2538. https://doi.org/10.2174/092986705774370691 DOI: https://doi.org/10.2174/092986705774370691

[63] Y. Li, H. Wang, W. Liu, J. Hou, J. Xu, Y. Guo, P. Hu. Cratoxylumxanthone C, a natural xanthone, inhibits lung cancer proliferation and metastasis by regulating STAT3 and FAK signal pathways. Frontiers in Pharmacology 13 (2022). https://doi.org/10.3389/fphar.2022.920422 DOI: https://doi.org/10.3389/fphar.2022.920422

[64] M. Liu, H. Yin, X. Qian, J. Dong, Z. Qian, J. Miao. Xanthohumol, a Prenylated Chalcone from Hops, Inhibits the Viability and Stemness of Doxorubicin-Resistant MCF-7/ADR Cells. Molecules 22 (2017) 36. https://doi.org/10.3390/molecules22010036 DOI: https://doi.org/10.3390/molecules22010036

[65] D.L. Holliday, V. Speirs. Choosing the right cell line for breast cancer research. Breast Cancer Research 13 (2011) 215. https://doi.org/10.1186/bcr2889 DOI: https://doi.org/10.1186/bcr2889

[66] B.D. Lehmann, J.A. Bauer, X. Chen, M.E. Sanders, A.B. Chakravarthy, Y. Shyr, J.A. Pietenpol. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation 121 (2011) 2750-2767. https://doi.org/10.1172/JCI45014 DOI: https://doi.org/10.1172/JCI45014

[67] G. Bianchini, J.M. Balko, I.A. Mayer, M.E. Sanders, L. Gianni. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nature Reviews Clinical Oncology 13 (2016) 674-690. https://doi.org/10.1038/nrclinonc.2016.66 DOI: https://doi.org/10.1038/nrclinonc.2016.66

[68] L. Jin, Z. Song, F. Cai, L. Ruan, R. Jiang. Chemistry and biological activities of naturally occurring and structurally modified podophyllotoxins. Molecules 28 (2022) 302. https://doi.org/10.3390/molecules28010302 DOI: https://doi.org/10.3390/molecules28010302

[69] M. Forgac. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nature Reviews Molecular Cell Biology 8 (2007) 917-929. https://doi.org/10.1038/nrm2272 DOI: https://doi.org/10.1038/nrm2272

[70] D. Mijaljica, M. Prescott, R.J. Devenish. V-ATPase engagement in autophagic processes. Autophagy 7 (2011) 666-668. https://doi.org/10.4161/auto.7.6.15812 DOI: https://doi.org/10.4161/auto.7.6.15812

[71] K.M. Hooper, E. Jacquin, T. Li, J.M. Goodwin, J.H. Brumell, J. Durgan, O. Florey. V-ATPase is a universal regulator of LC3-associated phagocytosis and non-canonical autophagy. Journal of Cell Biology 221 (2022) e202105112. https://doi.org/10.1083/jcb.202105112 DOI: https://doi.org/10.1083/jcb.202105112

[72] L. Jin, Z. Song, F. Cai, L. Ruan, R. Jiang. Chemistry and Biological Activities of Naturally Occurring and Structurally Modified Podophyllotoxins. Molecules 28 (2023) 302. https://doi.org/10.3390/molecules28010302 DOI: https://doi.org/10.3390/molecules28010302

[73] X. Liu, B. Testa, A. Fahr. Lipophilicity and its relationship with passive drug permeation. Pharmaceutical Research 28 (2011) 962-977. https://doi.org/10.1007/s11095-010-0303-7 DOI: https://doi.org/10.1007/s11095-010-0303-7

[74] L. Himakoun, P. Tuchinda, P. Puchadapirom, R. Tammasakchai, V. Leardkamolkarn. Evaluation of genotoxic and anti-mutagenic properties of cleistanthin A and cleistanthoside A tetraacetate. Asian Pacific Journal of Cancer Prevention 12 (2011) 3271-3275. https://journal.waocp.org/?sid=Entrez:PubMed&id=pmid:22471465&key=2011.12.12.3271

[75] Y. Zhao, R. Zhang, Y. Lu, J. Ma, L. Zhu. Synthesis and bioevaluation of heterocyclic derivatives of Cleistanthin-A. Bioorganic & Medicinal Chemistry 23 (2015) 4884-4890. https://doi.org/10.1016/j.bmc.2015.05.033 DOI: https://doi.org/10.1016/j.bmc.2015.05.033

[76] S. Nhlapho, M.H.L. Nyathi, B.L. Ngwenya, T. Dube, A. Telukdarie, I. Munien, A. Vermeulen, U.A.K. Chude-Okonkwo. Druggability of Pharmaceutical Compounds Using Lipinski Rules with Machine Learning. Sciences of Pharmacy 3 (2024) 177-192. https://doi.org/10.58920/sciphar0304264 DOI: https://doi.org/10.58920/sciphar0304264

[77] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25.1. Advanced Drug Delivery Reviews 46 (2001) 3-26. https://doi.org/https://doi.org/10.1016/S0169-409X(00)00129-0 DOI: https://doi.org/10.1016/S0169-409X(00)00129-0

[78] Bradley C. Doak, B. Over, F. Giordanetto, J. Kihlberg. Oral Druggable Space beyond the Rule of 5: Insights from Drugs and Clinical Candidates. Chemistry & Biology 21 (2014) 1115-1142. https://doi.org/https://doi.org/10.1016/j.chembiol.2014.08.013 DOI: https://doi.org/10.1016/j.chembiol.2014.08.013

[79] D.F. Veber, S.R. Johnson, H.-Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry 45 (2002) 2615-2623. https://doi.org/10.1021/jm020017n DOI: https://doi.org/10.1021/jm020017n

[80] A. Hernández, G.S. Bueno, R. Herrera-Palau, J.R. Pérez-Castiñeira, A. Serrano, V-ATPase Inhibitors in Cancer Therapy: Targeting Intraorganellar Acidification, in Topics in Anti-Cancer Research: Volume 2, Bentham Science Publishers2013, p. 231-256. https://doi.org/10.2174/97816080513661130201 DOI: https://doi.org/10.2174/9781608051366113020009

[81] M. Huss, F. Sasse, B. Kunze, R. Jansen, H. Steinmetz, G. Ingenhorst, A. Zeeck, H. Wieczorek. Archazolid and apicularen: novel specific V-ATPase inhibitors. BMC biochemistry 6 (2005) 1-10. https://doi.org/10.1186/1471-2091-6-13 DOI: https://doi.org/10.1186/1471-2091-6-13

[82] T. Chen, X. Lin, S. Lu, B. Li. V-ATPase in cancer: mechanistic insights and therapeutic potentials. Cell Communication and Signaling 22 (2024) 613. https://doi.org/10.1186/s12964-024-01998-9 DOI: https://doi.org/10.1186/s12964-024-01998-9

[83] M.T. Donato, L. Tolosa, M.J. Gómez-Lechón. Culture and Functional Characterization of Human Hepatoma HepG2 Cells. Methods in Molecular Biology 1250 (2015) 77-93. https://doi.org/10.1007/978-1-4939-2074-7_5 DOI: https://doi.org/10.1007/978-1-4939-2074-7_5

[84] S. Parasuraman, R. Raveendran, N.G. Rajesh, S. Nandhakumar. Sub-chronic toxicological evaluation of cleistanthin A and cleistanthin B from the leaves of Cleistanthus collinus (Roxb.). Toxicology Reports 1 (2014) 596-611. https://doi.org/10.1016/j.toxrep.2014.08.006 DOI: https://doi.org/10.1016/j.toxrep.2014.08.006

[85] Y. Zhao, Y. Lu, J. Ma, L. Zhu. Synthesis and Evaluation of Cleistanthin A Derivatives as Potent Vacuolar H+‐ATPase Inhibitors. Chemical Biology & Drug Design 86 (2015) 691-696. https://doi.org/10.1111/cbdd.12538 DOI: https://doi.org/10.1111/cbdd.12538

[86] Y. Ren, E.J.C. de Blanco, J.R. Fuchs, D.D. Soejarto, J.E. Burdette, S.M. Swanson, A.D. Kinghorn. Potential Anticancer Agents Characterized from Selected Tropical Plants. Journal of Natural Products 82 (2019) 657-679. https://doi.org/10.1021/acs.jnatprod.9b00018 DOI: https://doi.org/10.1021/acs.jnatprod.9b00018

Downloads

Published

21-09-2025

Issue

Section

Pharmaceutics

How to Cite

New xanthone and chemical constituents from the aerial parts of Mallotus glomerulatus and their cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells: Original scientific article. (2025). ADMET and DMPK, 2901. https://doi.org/10.5599/admet.2901

Similar Articles

51-60 of 100

You may also start an advanced similarity search for this article.