New xanthone and chemical constituents from the aerial parts of Mallotus glomerulatus and their cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells
Original scientific article
DOI:
https://doi.org/10.5599/admet.2901Keywords:
cleistanthin A, xanthone, breast cancer, V-ATPaseAbstract
Background and purpose: Breast cancer remains a significant global health burden, especially in low-resource settings where standard therapies are limited. This study aimed to explore Mallotus glomerulatus, a lesser-known Thai medicinal plant, as a potential source of novel anti-breast cancer agents. Experimental approach: A phytochemical investigation of M. glomerulatus resulted in the isolation and structural characterization of a novel xanthone (Compound 1) and cleistanthin A (Compound 10) using UV, IR, NMR, and HRMS techniques. Cytotoxicity of the compounds was evaluated in vitro against MCF-7 (ER-positive) and MDA-MB-231 (triple-negative) breast cancer cell lines, along with HepG2 liver cells. Molecular docking studies were conducted to assess their interaction with vacuolar H+-ATPase (V-ATPase). Key results: Compound 1 demonstrated selective cytotoxicity toward MCF-7 cells, whereas cleistanthin A exhibited potent cytotoxicity against both breast cancer lines, with nanomolar IC50 values and a high selectivity index (>100) for MDA-MB-231 compared to HepG2 cells. Docking analysis revealed favourable binding of both compounds at the a–c subunit interface of V-ATPase, suggesting a mechanism involving proton pump inhibition and lysosomal dysfunction. Conclusion: The findings highlight M. glomerulatus, particularly cleistanthin A, as a promising source of safe and affordable anti-breast cancer compounds with potential therapeutic value. Further studies on the mechanism and in vivo efficacy are warranted.
Downloads
References
[1] F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel, I. Soerjomataram, A. Jemal. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 74 (2024) 229-263. https://doi.org/10.3322/caac.21834 DOI: https://doi.org/10.3322/caac.21834
[2] J. Chen, F.D.V. Ho, E.J.G. Feliciano, J.F. Wu, K. Magsanoc-Alikpala, E.C. Dee. Trends in female breast cancer among adolescent and young adults in Southeast Asia. Lancet Regional Health Southeast Asia 34 (2025) 100545. https://doi.org/10.1016/j.lansea.2025.100545 DOI: https://doi.org/10.1016/j.lansea.2025.100545
[3] J. Wang, S.G. Wu. Breast Cancer: An Overview of Current Therapeutic Strategies, Challenge, and Perspectives. Breast Cancer: Targets and Therapy 15 (2023) 721-730. https://doi.org/10.2147/bctt.S432526 DOI: https://doi.org/10.2147/BCTT.S432526
[4] M. Gion, C. Saavedra, J. Perez-Garcia, J. Cortes. Oligometastatic Disease: When Stage IV Breast Cancer Could Be "Cured". Cancers (Basel) 14 (2022). https://doi.org/10.3390/cancers14215229 DOI: https://doi.org/10.3390/cancers14215229
[5] T.U. Barbie, M. Golshan. De Novo Stage 4 Metastatic Breast Cancer: A Surgical Disease? Annals of Surgical Oncology 25 (2018) 3109-3111. https://doi.org/10.1245/s10434-018-6664-6 DOI: https://doi.org/10.1245/s10434-018-6664-6
[6] C.H. Barrios, T. Reinert, G. Werutsky. Access to high-cost drugs for advanced breast cancer in Latin America, particularly trastuzumab. Ecancermedicalscience 13 (2019) 898. https://doi.org/10.3332/ecancer.2019.898 DOI: https://doi.org/10.3332/ecancer.2019.898
[7] K. Daoprasert, S. Sangkam, M. Praditkay, K. Khamkhod, P. Suwannamuang. Factors Related to Survival Rate in Breast Cancer Patients Undergoing Treatments at Lampang Cancer Hospital. Journal of The Department of Medical Services 49 (2024) 60-68. https://he02.tci-thaijo.org/index.php/JDMS/article/view/265917
[8] P. Sukpan, K. Kanokwiroon, H. Sriplung, P. Paisarn, S. Sangkhathat. Survival Outcomes in Breast Cancer Patients and Associated Factors in a Border Province of Thailand: A Hospital-based Review. Journal of Health Science and Medical Research 41 (2023) 1-9. https://doi.org/10.31584/jhsmr.2022911 DOI: https://doi.org/10.31584/jhsmr.2022911
[9] P.C.v. Welzen, R.W.J.M.v.d. Ham, K.K.M. Kulju. Mallotusglomerulatus (Euphorbiaceae sensu stricto), a new species: description, pollen and phylogenetic position. Thai Forest Bulletin (Botany) 0 (2014) 173-178. https://li01.tci-thaijo.org/index.php/ThaiForestBulletin/article/view/24387
[10] D.-L. CHEN. Research progress on chemical constituents of plants from Mallotus Lour. and their pharmacological activities. Zhongcaoyao (2014) 2248-2264. https://doi.org/10.7501/j.issn.0253-2670.2014.15.024
[11] I. Tripathi, P. Chaudhary, P. Pandey. Mallotus philippensis: a miracle stick. World Journal of Pharmacceutical Research 6 (2017) 678-687. https://doi.org/10.20959/wjpr20177-8816 DOI: https://doi.org/10.20959/wjpr20177-8816
[12] C. Rivière, V. Nguyen Thi Hong, Q. Tran Hong, G. Chataigné, N. Nguyen Hoai, B. Dejaegher, C. Tistaert, T. Nguyen Thi Kim, Y. Vander Heyden, M. Chau Van, J. Quetin-Leclercq. Mallotus species from Vietnamese mountainous areas: phytochemistry and pharmacological activities. Phytochemistry Reviews 9 (2010) 217-253. https://doi.org/10.1007/s11101-009-9152-6 DOI: https://doi.org/10.1007/s11101-009-9152-6
[13] P.M. Giang, H. Otsuka. New Compounds and Potential Candidates for Drug Discovery from Medicinal Plants of Vietnam. Chemical and Pharmaceutical Bulletin 66 (2018) 493-505. https://doi.org/10.1248/cpb.c17-00628 DOI: https://doi.org/10.1248/cpb.c17-00628
[14] P. Bag, D. Chattopadhyay, H. Mukherjee, D. Ojha, N. Mandal, M.C. Sarkar, T. Chatterjee, G. Das, S. Chakraborti. Anti-herpes virus activities of bioactive fraction and isolated pure constituent of Mallotus peltatus: an ethnomedicine from Andaman Islands. Virology Journal 9 (2012) 98. https://doi.org/10.1186/1743-422X-9-98 DOI: https://doi.org/10.1186/1743-422X-9-98
[15] M. Adhav. Phytochemical screening and antimicrobial activity of Mallotus philippensis Muell. Arg. Journal of Pharmacognosy and Phytochemistry 3 (2015) 188-191. https://www.phytojournal.com/archives/2015.v3.i5.484/phytochemical-screening-and-antimicrobial-activity-of-mallotus-philippensis-muell-arg
[16] V.P. Shelly Rana, Anand Sagar. Antibacterial Activity of Malotus philippensis Fruit Extract. Journal of Medicinal Plants Studies 4 (2016) 104-106. https://www.plantsjournal.com/archives/?year=2016&vol=4&issue=3&part=B&ArticleId=343
[17] M.M. Hasan, N. Uddin, M.R. Hasan, A.F. Islam, M.M. Hossain, A.B. Rahman, M.S. Hossain, I.A. Chowdhury, M.S. Rana. Analgesic and anti-inflammatory activities of leaf extract of Mallotus repandus (Willd.) Muell. Arg. Biomed Research International 2014 (2014) 539807. https://doi.org/10.1155/2014/539807 DOI: https://doi.org/10.1155/2014/539807
[18] P. Sakthidhasan, P. Sathish Kumar, M.B.G. Viswanathan. Cytotoxic potential of bioactive seed proteins from Mallotus philippensis against various cancer cell lines. Applied Nanoscience 13 (2023) 1179-1186. https://doi.org/10.1007/s13204-021-01974-6 DOI: https://doi.org/10.1007/s13204-021-01974-6
[19] P. Laupattarakasem, B. Sripa, C. Hahnvajanawong. Effect of Mallotus repandus onVascular Endothelial and Cholangiocarcinoma Cells Migration. Srinagarind Medical Journal 25 (2010) 201-207. https://li01.tci-thaijo.org/index.php/SRIMEDJ/article/view/12921
[20] ] J.B. Kim, K.-M. Lee, E. Ko, W. Han, J.E. Lee, I. Shin, J.-Y. Bae, S. Kim, D.-Y. Noh. Berberine inhibits growth of the breast cancer cell lines MCF-7 and MDA-MB-231. Planta Medica 74 (2008) 39-42. https://doi.org/10.1055/s-2007-993779 DOI: https://doi.org/10.1055/s-2007-993779
[21] P. Phannasil, C. Akekawatchai, S. Jitrapakdee. MicroRNA expression profiles associated with the metastatic ability of MDA‑MB‑231 breast cancer cells. Oncology Letters 26 (2023) 339. https://doi.org/10.3892/ol.2023.13926 DOI: https://doi.org/10.3892/ol.2023.13926
[22] A.R. Estrada-Pérez, N. Bakalara, J.B. García-Vázquez, M.C. Rosales-Hernández, C. Fernández-Pomares, J. Correa-Basurto. LC–MS Based Lipidomics Depict Phosphatidylethanolamine as Biomarkers of TNBC MDA-MB-231 over nTNBC MCF-7 Cells. International Journal of Molecular Sciences 23 (2022) 12074. https://doi.org/10.3390/ijms232012074 DOI: https://doi.org/10.3390/ijms232012074
[23] M. Franchi, V. Masola, G. Bellin, M. Onisto, K.-A. Karamanos, Z. Piperigkou. Collagen fiber array of peritumoral stroma influences epithelial-to-mesenchymal transition and invasive potential of mammary cancer cells. Journal of Clinical Medicine 8 (2019) 213. https://doi.org/10.3390/jcm8020213 DOI: https://doi.org/10.3390/jcm8020213
[24] M. Yang, W.J. Brackenbury. Membrane potential and cancer progression. Frontiers in Physiology 4 (2013) 185. https://doi.org/10.3389/fphys.2013.00185 DOI: https://doi.org/10.3389/fphys.2013.00185
[25] L. Stransky, K. Cotter, M. Forgac. The function of V-ATPases in cancer. Physiological Reviews 96 (2016) 1071-1091. https://doi.org/10.1152/physrev.00035.2015 DOI: https://doi.org/10.1152/physrev.00035.2015
[26] S.R. Sennoune, K. Bakunts, G.M. Martínez, J.L. Chua-Tuan, Y. Kebir, M.N. Attaya, R. Martínez-Zaguilán. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. American Journal of Physiology-Cell Physiology 286 (2004) C1443-C1452. https://doi.org/10.1152/ajpcell.00407.2003 DOI: https://doi.org/10.1152/ajpcell.00407.2003
[27] A. Hendrix, R. Sormunen, W. Westbroek, K. Lambein, H. Denys, G. Sys, G. Braems, R. Van den Broecke, V. Cocquyt, C. Gespach. Vacuolar H+ ATPase expression and activity is required for Rab27B‐dependent invasive growth and metastasis of breast cancer. International Journal of Cancer 133 (2013) 843-854. https://doi.org/10.1002/ijc.28079 DOI: https://doi.org/10.1002/ijc.28079
[28] K.A. Keon, S. Benlekbir, S.H. Kirsch, R. Müller, J.L. Rubinstein. Cryo-EM of the Yeast VO Complex Reveals Distinct Binding Sites for Macrolide V-ATPase Inhibitors. ACS Chemical Biology 17 (2022) 619-628. https://doi.org/10.1021/acschembio.1c00894 DOI: https://doi.org/10.1021/acschembio.1c00894
[29] A. Wongpan, W. Panvongsa, S. Krobthong, B. Nutho, P. Kanjanasirirat, K. Jearawuttanakul, T. Khumpanied, S. Phlaetita, N. Chabang, B. Munyoo, P. Tuchinda, M. Ponpuak, S. Borwornpinyo, A. Chairoungdua. Cleistanthin A derivative disrupts autophagy and suppresses head and neck squamous cell carcinoma progression via targeted vacuolar ATPase. Scientific Reports 14 (2024) 22582. https://doi.org/10.1038/s41598-024-73186-1 DOI: https://doi.org/10.1038/s41598-024-73186-1
[30] P.A. Ravindranath, S. Forli, D.S. Goodsell, A.J. Olson, M.F. Sanner. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLOS Computational Biology 11 (2015) e1004586. https://doi.org/10.1371/journal.pcbi.1004586 DOI: https://doi.org/10.1371/journal.pcbi.1004586
[31] J. Eberhardt, D. Santos-Martins, A.F. Tillack, S. Forli. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling 61 (2021) 3891-3898. https://doi.org/10.1021/acs.jcim.1c00203 DOI: https://doi.org/10.1021/acs.jcim.1c00203
[32] E.F. Pettersen, T.D. Goddard, C.C. Huang, E.C. Meng, G.S. Couch, T.I. Croll, J.H. Morris, T.E. Ferrin. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science 30 (2021) 70-82. https://doi.org/https://doi.org/10.1002/pro.3943 DOI: https://doi.org/10.1002/pro.3943
[33] G. Ni, S. Yang, J. Yue. Anomalusins A and B, two new ent-rosane diterpenoids from Mallotus anomalus. Journal of Chinese Pharmaceutical Sciences 21 (2012) 421. https://doi.org/10.5246/jcps.2012.05.056 DOI: https://doi.org/10.5246/jcps.2012.05.056
[34] Y. YANG, Z. TANG, S. FENG, R. XU, Q. ZHONG, Y. ZHONG. Studies on chemical constitutions of mallotus anomalus III: The structure of new rosane type diterpenoids. Acta Chimica Sinica 50 (1992) 200. https://sioc-journal.cn/Jwk_hxxb/EN/Y1992/V50/I2/200
[35] P.V. Kiem, C.V. Minh, H.T. Huong, N.H. Nam, J.J. Lee, Y.H. Kim. Pentacyclic triterpenoids from Mallotus apelta. Archives of Pharmacal Research 27 (2004) 1109-1113. https://doi.org/10.1007/BF02975113 DOI: https://doi.org/10.1007/BF02975113
[36] G.F. Sousa, L.P. Duarte, A.F. Alcântara, G.D. Silva, S.A. Vieira-Filho, R.R. Silva, D.M. Oliveira, J.A. Takahashi. New triterpenes from Maytenus robusta: structural elucidation based on NMR experimental data and theoretical calculations. Molecules 17 (2012) 13439-13456. https://doi.org/10.3390/molecules171113439 DOI: https://doi.org/10.3390/molecules171113439
[37] W.F. Tinto, G. Blyden, W.F. Reynolds, S. McLean. Diterpene and anthraquinone constituents of Glycydendron amazonicum. Journal of Natural Products 54 (1991) 1127-1130. https://doi.org/10.1021/np50076a037 DOI: https://doi.org/10.1021/np50076a037
[38] J. Mi, R. Xu, Y. Yang, P. Yang. Studies on circular dichroism of diterpenoids from Mallotus anomalus and Sesquiterpenoid tussilagone. Acta Pharmaceutica Sinica 28 (1993) 105-109. https://europepmc.org/article/med/8328277
[39] M. Tanjung, T.S. Tjahjandarie, M.H. Sentosa. Antioxidant and cytotoxic agent from the rhizomes of Kaempferia pandurata. Asian Pacific Journal of Tropical Disease 3 (2013) 401-404. https://doi.org/10.1016/S2222-1808(13)60091-2 DOI: https://doi.org/10.1016/S2222-1808(13)60091-2
[40] B.-N. Su, E.J. Park, J.S. Vigo, J.G. Graham, F. Cabieses, H.H. Fong, J.M. Pezzuto, A.D. Kinghorn. Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay. Phytochemistry 63 (2003) 335-341. https://doi.org/10.1016/S0031-9422(03)00112-2 DOI: https://doi.org/10.1016/S0031-9422(03)00112-2
[41] P. Rwangabo, M. Claeys, L. Pieters, J. Corthout, D. Vanden Berghe, A. Vlietinck. Umuhengerin, a new antimicrobially active flavonoid from Lantana trifolia. Journal of Natural Products 51 (1988) 966-968. https://doi.org/10.1021/np50059a026 DOI: https://doi.org/10.1021/np50059a026
[42] D. Deka, V. Kumar, C. Prasad, R. Srivastava. Isolation of flavonoids from Oroxylum indicum (Vent.) stem bark and their antioxidant activity using DPPH assay. International Journal of Chemistry and Pharmaceutical Sciences 2 (2014) 783-787. https://www.researchgate.net/publication/280561916_isolation_of_flavonoids_from_oroxylum_indicum_stem_bark_and_their_antioxidant_activity_using_DPPH_assay#fullTextFileContent
[43] A. Anjaneyulu, P.A. Ramaiah, L.R. Row, R. Venkateswarlu, A. Pelter, R. Ward. New lignans from the heartwood of Cleistanthus collinus. Tetrahedron 37 (1981) 3641-3652. https://doi.org/10.1016/S0040-4020(01)98893-3 DOI: https://doi.org/10.1016/S0040-4020(01)98893-3
[44] T. Govindachari, S. Sathe, N. Viswanathan, B. Pai, M. Srinivasan. Chemical constituents of Cleistanthus collinus (Roxb.). Tetrahedron 25 (1969) 2815-2821. https://doi.org/10.1016/0040-4020(69)80025-6 DOI: https://doi.org/10.1016/0040-4020(69)80025-6
[45] U.-J. Youn, Y.-J. Lee, H.-R. Jeon, H.-J. Shin, Y.-M. Son, J.-W. Nam, A.-R. Han, E.-K. Seo. A pyridyl alkaloid and benzoic acid derivatives from the rhizomes of Anemarrhena asphodeloides. Natural Product Sciences 16 (2010) 203-206. https://www.koreascience.kr/article/JAKO201006159732179.view?orgId=anpor
[46] G. Cheng, X. Zeng, X. Cui. Benzoquinone-promoted aerobic oxidative hydroxylation of arylboronic acids in water. Synthesis 46 (2014) 295-300. https://doi.org/10.1055/s-0033-1338571 DOI: https://doi.org/10.1055/s-0033-1338571
[47] G. Indrayanto, G.S. Putra, F. Suhud. Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles of Drug Substances, Excipients and Related Methodology 46 (2021) 273-307. https://doi.org/10.1016/bs.podrm.2020.07.005 DOI: https://doi.org/10.1016/bs.podrm.2020.07.005
[48] K. Jearawuttanakul, P. Khumkhrong, K. Suksen, S. Reabroi, B. Munyoo, P. Tuchinda, S. Borwornpinyo, N. Boonmuen, A. Chairoungdua. Cleistanthin A induces apoptosis and suppresses motility of colorectal cancer cells. European Journal of Pharmacology 889 (2020) 173604. https://doi.org/10.1016/j.ejphar.2020.173604 DOI: https://doi.org/10.1016/j.ejphar.2020.173604
[49] J. Paha, P. Kanjanasirirat, B. Munyoo, P. Tuchinda, N. Suvannang, C. Nantasenamat, K. Boonyarattanakalin, P. Kittakoop, S. Srikor, G. Kongklad, N. Rangkasenee, S. Hongeng, P. Utaisincharoen, S. Borwornpinyo, M. Ponpuak. A novel potent autophagy inhibitor ECDD-S27 targets vacuolar ATPase and inhibits cancer cell survival. Scientific Reports 9 (2019) 9177. https://doi.org/10.1038/s41598-019-45641-x DOI: https://doi.org/10.1038/s41598-019-45641-x
[50] Z. Feng, X. Lu, L. Gan, Q. Zhang, L. Lin. Xanthones, a promising anti-inflammatory scaffold: Structure, activity, and drug likeness analysis. Molecules 25 (2020) 598. https://doi.org/10.3390/molecules25030598 DOI: https://doi.org/10.3390/molecules25030598
[51] Q. Huang, Y. Wang, H. Wu, M. Yuan, C. Zheng, H. Xu. Xanthone glucosides: Isolation, bioactivity and synthesis. Molecules 26 (2021) 5575. https://doi.org/10.3390/molecules26185575 DOI: https://doi.org/10.3390/molecules26185575
[52] L.M. Vieira, A. Kijjoa. Naturally-occurring xanthones: recent developments. Current Medicinal Chemistry 12 (2005) 2413-2446. https://doi.org/10.2174/092986705774370682 DOI: https://doi.org/10.2174/092986705774370682
[53] Y. Ren, E.J.C. De Blanco, J.R. Fuchs, D.D. Soejarto, J.E. Burdette, S.M. Swanson, A.D. Kinghorn. Potential anticancer agents characterized from selected tropical plants. Journal of Natural Products 82 (2019) 657-679. https://doi.org/10.1021/acs.jnatprod.9b00018 DOI: https://doi.org/10.1021/acs.jnatprod.9b00018
[54] X.-H. Xu, Y.-C. Chen, Y.-L. Xu, Z.-L. Feng, Q.-Y. Liu, X. Guo, L.-G. Lin, J.-J. Lu. Garcinone E Blocks Autophagy Through Lysosomal Functional Destruction in Ovarian Cancer Cells. World Journal of Traditional Chinese Medicine 7 (2021) 209-216. https://doi.org/10.4103/wjtcm.wjtcm_83_20 DOI: https://doi.org/10.4103/wjtcm.wjtcm_83_20
[55] T. Karunakaran, G.C. Ee, K.H. Tee, I.S. Ismail, N.H. Zamakshshari, W.M. Peter. Cytotoxic prenylated xanthone and coumarin derivatives from Malaysian Mesua beccariana. Phytochemistry Letters 17 (2016) 131-134. https://doi.org/10.1016/j.phytol.2016.07.026 DOI: https://doi.org/10.1016/j.phytol.2016.07.026
[56] G.A. Mohamed, A.M. Al-Abd, A.M. El-halawany, H.M. Abdallah, S.R.M. Ibrahim. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. Journal of Ethnopharmacology 198 (2017) 302-312. https://doi.org/https://doi.org/10.1016/j.jep.2017.01.030 DOI: https://doi.org/10.1016/j.jep.2017.01.030
[57] T.T.H. Nguyen, Z. Qu, V.T. Nguyen, T.T. Nguyen, T.T.A. Le, S. Chen, S.T. Ninh. Natural Prenylated Xanthones as Potential Inhibitors of PI3k/Akt/mTOR Pathway in Triple Negative Breast Cancer Cells. Planta Medica 88 (2022) 1141-1151. https://doi.org/10.1055/a-1728-5166 DOI: https://doi.org/10.1055/a-1728-5166
[58] Z. Xu, L. Huang, X.H. Chen, X.F. Zhu, X.J. Qian, G.K. Feng, W.J. Lan, H.J. Li. Cytotoxic prenylated xanthones from the pericarps of Garcinia mangostana. Molecules 19 (2014) 1820-1827. https://doi.org/10.3390/molecules19021820 DOI: https://doi.org/10.3390/molecules19021820
[59] R.A. Castanheiro, A.M. Silva, N.A. Campos, M.S. Nascimento, M.M. Pinto. Antitumor Activity of Some Prenylated Xanthones. Pharmaceuticals (Basel) 2 (2009) 33-43. https://doi.org/10.3390/ph2020033 DOI: https://doi.org/10.3390/ph2020033
[60] A. Wongpan, W. Panvongsa, S. Krobthong, B. Nutho, P. Kanjanasirirat, K. Jearawuttanakul, T. Khumpanied, S. Phlaetita, N. Chabang, B. Munyoo, P. Tuchinda, M. Ponpuak, S. Borwornpinyo, A. Chairoungdua. Cleistanthin A derivative disrupts autophagy and suppresses head and neck squamous cell carcinoma progression via targeted vacuolar ATPase. Scientific Reports 14 (2024) 22582. https://doi.org/10.1038/s41598-024-73186-1 DOI: https://doi.org/10.1038/s41598-024-73186-1
[61] H. Li, W.-T. Kang, Y. Zheng, Y. He, R. Zhong, S. Fang, W. Wen, S. Liu, S. Lin. Development of xanthone derivatives as effective broad-spectrum antimicrobials: Disrupting cell wall and inhibiting DNA synthesis. Science Advances 11 (2025) eadt4723. https://doi.org/doi:10.1126/sciadv.adt4723 DOI: https://doi.org/10.1126/sciadv.adt4723
[62] M. Pinto, M. Sousa, M. Nascimento. Xanthone derivatives: new insights in biological activities. Current Medicinal Chemistry 12 (2005) 2517-2538. https://doi.org/10.2174/092986705774370691 DOI: https://doi.org/10.2174/092986705774370691
[63] Y. Li, H. Wang, W. Liu, J. Hou, J. Xu, Y. Guo, P. Hu. Cratoxylumxanthone C, a natural xanthone, inhibits lung cancer proliferation and metastasis by regulating STAT3 and FAK signal pathways. Frontiers in Pharmacology 13 (2022). https://doi.org/10.3389/fphar.2022.920422 DOI: https://doi.org/10.3389/fphar.2022.920422
[64] M. Liu, H. Yin, X. Qian, J. Dong, Z. Qian, J. Miao. Xanthohumol, a Prenylated Chalcone from Hops, Inhibits the Viability and Stemness of Doxorubicin-Resistant MCF-7/ADR Cells. Molecules 22 (2017) 36. https://doi.org/10.3390/molecules22010036 DOI: https://doi.org/10.3390/molecules22010036
[65] D.L. Holliday, V. Speirs. Choosing the right cell line for breast cancer research. Breast Cancer Research 13 (2011) 215. https://doi.org/10.1186/bcr2889 DOI: https://doi.org/10.1186/bcr2889
[66] B.D. Lehmann, J.A. Bauer, X. Chen, M.E. Sanders, A.B. Chakravarthy, Y. Shyr, J.A. Pietenpol. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation 121 (2011) 2750-2767. https://doi.org/10.1172/JCI45014 DOI: https://doi.org/10.1172/JCI45014
[67] G. Bianchini, J.M. Balko, I.A. Mayer, M.E. Sanders, L. Gianni. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nature Reviews Clinical Oncology 13 (2016) 674-690. https://doi.org/10.1038/nrclinonc.2016.66 DOI: https://doi.org/10.1038/nrclinonc.2016.66
[68] L. Jin, Z. Song, F. Cai, L. Ruan, R. Jiang. Chemistry and biological activities of naturally occurring and structurally modified podophyllotoxins. Molecules 28 (2022) 302. https://doi.org/10.3390/molecules28010302 DOI: https://doi.org/10.3390/molecules28010302
[69] M. Forgac. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nature Reviews Molecular Cell Biology 8 (2007) 917-929. https://doi.org/10.1038/nrm2272 DOI: https://doi.org/10.1038/nrm2272
[70] D. Mijaljica, M. Prescott, R.J. Devenish. V-ATPase engagement in autophagic processes. Autophagy 7 (2011) 666-668. https://doi.org/10.4161/auto.7.6.15812 DOI: https://doi.org/10.4161/auto.7.6.15812
[71] K.M. Hooper, E. Jacquin, T. Li, J.M. Goodwin, J.H. Brumell, J. Durgan, O. Florey. V-ATPase is a universal regulator of LC3-associated phagocytosis and non-canonical autophagy. Journal of Cell Biology 221 (2022) e202105112. https://doi.org/10.1083/jcb.202105112 DOI: https://doi.org/10.1083/jcb.202105112
[72] L. Jin, Z. Song, F. Cai, L. Ruan, R. Jiang. Chemistry and Biological Activities of Naturally Occurring and Structurally Modified Podophyllotoxins. Molecules 28 (2023) 302. https://doi.org/10.3390/molecules28010302 DOI: https://doi.org/10.3390/molecules28010302
[73] X. Liu, B. Testa, A. Fahr. Lipophilicity and its relationship with passive drug permeation. Pharmaceutical Research 28 (2011) 962-977. https://doi.org/10.1007/s11095-010-0303-7 DOI: https://doi.org/10.1007/s11095-010-0303-7
[74] L. Himakoun, P. Tuchinda, P. Puchadapirom, R. Tammasakchai, V. Leardkamolkarn. Evaluation of genotoxic and anti-mutagenic properties of cleistanthin A and cleistanthoside A tetraacetate. Asian Pacific Journal of Cancer Prevention 12 (2011) 3271-3275. https://journal.waocp.org/?sid=Entrez:PubMed&id=pmid:22471465&key=2011.12.12.3271
[75] Y. Zhao, R. Zhang, Y. Lu, J. Ma, L. Zhu. Synthesis and bioevaluation of heterocyclic derivatives of Cleistanthin-A. Bioorganic & Medicinal Chemistry 23 (2015) 4884-4890. https://doi.org/10.1016/j.bmc.2015.05.033 DOI: https://doi.org/10.1016/j.bmc.2015.05.033
[76] S. Nhlapho, M.H.L. Nyathi, B.L. Ngwenya, T. Dube, A. Telukdarie, I. Munien, A. Vermeulen, U.A.K. Chude-Okonkwo. Druggability of Pharmaceutical Compounds Using Lipinski Rules with Machine Learning. Sciences of Pharmacy 3 (2024) 177-192. https://doi.org/10.58920/sciphar0304264 DOI: https://doi.org/10.58920/sciphar0304264
[77] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25.1. Advanced Drug Delivery Reviews 46 (2001) 3-26. https://doi.org/https://doi.org/10.1016/S0169-409X(00)00129-0 DOI: https://doi.org/10.1016/S0169-409X(00)00129-0
[78] Bradley C. Doak, B. Over, F. Giordanetto, J. Kihlberg. Oral Druggable Space beyond the Rule of 5: Insights from Drugs and Clinical Candidates. Chemistry & Biology 21 (2014) 1115-1142. https://doi.org/https://doi.org/10.1016/j.chembiol.2014.08.013 DOI: https://doi.org/10.1016/j.chembiol.2014.08.013
[79] D.F. Veber, S.R. Johnson, H.-Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry 45 (2002) 2615-2623. https://doi.org/10.1021/jm020017n DOI: https://doi.org/10.1021/jm020017n
[80] A. Hernández, G.S. Bueno, R. Herrera-Palau, J.R. Pérez-Castiñeira, A. Serrano, V-ATPase Inhibitors in Cancer Therapy: Targeting Intraorganellar Acidification, in Topics in Anti-Cancer Research: Volume 2, Bentham Science Publishers2013, p. 231-256. https://doi.org/10.2174/97816080513661130201 DOI: https://doi.org/10.2174/9781608051366113020009
[81] M. Huss, F. Sasse, B. Kunze, R. Jansen, H. Steinmetz, G. Ingenhorst, A. Zeeck, H. Wieczorek. Archazolid and apicularen: novel specific V-ATPase inhibitors. BMC biochemistry 6 (2005) 1-10. https://doi.org/10.1186/1471-2091-6-13 DOI: https://doi.org/10.1186/1471-2091-6-13
[82] T. Chen, X. Lin, S. Lu, B. Li. V-ATPase in cancer: mechanistic insights and therapeutic potentials. Cell Communication and Signaling 22 (2024) 613. https://doi.org/10.1186/s12964-024-01998-9 DOI: https://doi.org/10.1186/s12964-024-01998-9
[83] M.T. Donato, L. Tolosa, M.J. Gómez-Lechón. Culture and Functional Characterization of Human Hepatoma HepG2 Cells. Methods in Molecular Biology 1250 (2015) 77-93. https://doi.org/10.1007/978-1-4939-2074-7_5 DOI: https://doi.org/10.1007/978-1-4939-2074-7_5
[84] S. Parasuraman, R. Raveendran, N.G. Rajesh, S. Nandhakumar. Sub-chronic toxicological evaluation of cleistanthin A and cleistanthin B from the leaves of Cleistanthus collinus (Roxb.). Toxicology Reports 1 (2014) 596-611. https://doi.org/10.1016/j.toxrep.2014.08.006 DOI: https://doi.org/10.1016/j.toxrep.2014.08.006
[85] Y. Zhao, Y. Lu, J. Ma, L. Zhu. Synthesis and Evaluation of Cleistanthin A Derivatives as Potent Vacuolar H+‐ATPase Inhibitors. Chemical Biology & Drug Design 86 (2015) 691-696. https://doi.org/10.1111/cbdd.12538 DOI: https://doi.org/10.1111/cbdd.12538
[86] Y. Ren, E.J.C. de Blanco, J.R. Fuchs, D.D. Soejarto, J.E. Burdette, S.M. Swanson, A.D. Kinghorn. Potential Anticancer Agents Characterized from Selected Tropical Plants. Journal of Natural Products 82 (2019) 657-679. https://doi.org/10.1021/acs.jnatprod.9b00018 DOI: https://doi.org/10.1021/acs.jnatprod.9b00018
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Phongthon Kanjanasirirat, Napasorn Chabang, Chanikarn Wongwitayasombat, Patoomratana Tuchinda, Bamroong Munyoo, Niwat Kangwanrangsan, Suradej Hongeng, Bodee Nutho, Sitthivut Charoensutthivarakul

This work is licensed under a Creative Commons Attribution 4.0 International License.



