Development of a biorelevant dissolution method for inhalation products: Proof of concept using drugs with diverse solubilities

Original scientific article

Authors

  • Amar Elezović Control Laboratory of Agency for Medicinal Products and Medical Devices of Bosnia and Herzegovina, Maršala Tita 9, Sarajevo, Bosnia and Herzegovina https://orcid.org/0000-0001-9832-9135
  • Sandra Cvijić University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, 11000 Belgrade, Serbia https://orcid.org/0000-0001-8291-791X
  • Saša Pilipović Control Laboratory of Agency for Medicinal Products and Medical Devices of Bosnia and Herzegovina, Maršala Tita 9, Sarajevo, Bosnia and Herzegovina https://orcid.org/0000-0001-7574-5881
  • Alisa Elezović University of Sarajevo – Faculty of Pharmacy, Department of Pharmaceutical Technology, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina https://orcid.org/0000-0003-0559-1463
  • Jelena Parojčić University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, Beograd, Serbia https://orcid.org/0000-0001-8074-6221

DOI:

https://doi.org/10.5599/admet.2861

Keywords:

Inhalers, pressurized metered dose inhalers, dissolution, in vivo-in vitro-in silico correlation

Abstract

Background and purpose: Due to their unique application and action, inhalation products require specific quality tests, such as Uniformity of Delivered Dose and Aerodynamic Assessment of Fine Particles. While there's no current official requirement for dissolution tests, new draft guidelines are introducing them as a supportive or required measure; however, a universally accepted methodology for such testing remains elusive. The aim of the present study was to explore the discriminatory ability and in vivo predictability of the newly developed dissolution assembly. Experimental approach: The applied experimental approach to biopharmaceutical characterization of inhalation products involved developing a biorelevant method for testing the dissolution rate of the selected active substances. Seven commercially available products, formulated as pressurized metered dose inhalers, containing either salmeterol xinafoate or beclomethasone dipropionate, have been studied. The research strategy combined in vitro testing within silico simulations. Key results: The developed dissolution method did not detect significant differences in the case of products containing highly soluble salmeterol, but it did reveal differences for products containing poorly soluble beclomethasone dipropionate. Moreover, a correlation was identified between the dissolution test results and absorption constants for beclomethasone dipropionate. Conclusion: The obtained results indicated that the investigated products would not be considered bioequivalent based on the aerodynamic particle size distribution. It was demonstrated that a discriminative dissolution method can be developed through a well-established paradigm of dissolution testing, while taking into account the specificities of the inhalation route of administration.

Downloads

Download data is not yet available.

References

[1] European Medicines Agency. Guideline on the pharmaceutical quality of inhalation and nasal products. European Medicines Agency, London, 2006. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-pharmaceutical-quality-inhalation-and-nasal-products_en.pdf (Accessed: 28.04.2025.)

[2] Council of Europe, European Pharmacopoeia, 11 ed., Council of Europe, Strasbourg, 2022. https://www.edqm.eu/en/european-pharmacopoeia-ph.-eur.-11th-edition

[3] European Medicines Agency. Guideline on the pharmaceutical quality of inhalation and nasal medicinal products - Draft. Amsterdam, 2024. https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-pharmaceutical-quality-inhalation-nasal-medicinal-products-revision-1_en.pdf (Accessed: 28.04.2025.)

[4] V. Gray, A. Hickey, P. Balmer, N. Davies, C. Dunbar, T. Foster, B. Olsson, M. Sakagami, V. Shah, M. Smurthwaite, J. Veranth, K. Zaidi. The Inhalation Ad Hoc Advisory Panel for the USP Performance Tests of Inhalation Dosage Forms. Pharmacopeial Forum 34(4) (2008) 1068-1074. https://www.researchgate.net/publication/237379078_The_Inhalation_Ad_Hoc_Advisory_Panel_for_the_USP_Performance_Tests_of_Inhalation_Dosage_Forms

[5] Food and Drug Administration. Draft Guidance on Budesonide; Formoterol Fumatare Dihydrate 2024. https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_021929.pdf (Accessed: 28.04.2025.)

[6] Food and Drug Administration. Draft Guidance on Fluticasone Propionate 2024. https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_021433.pdf (Accessed: 028.04.2025.)

[7] A. Nokhodchi, S. Chavan, T. Ghafourian. In Vitro Dissolution and Permeability Testing of Inhalation Products: Challenges and Advances. Pharmaceutics 15(3) (2023) 983. https://doi.org/10.3390/pharmaceutics15030983 DOI: https://doi.org/10.3390/pharmaceutics15030983

[8] B.B. Eedara, R. Bastola, S.C. Das. Dissolution and Absorption of Inhaled Drug Particles in the Lungs. Pharmaceutics 14(12) (2022) 2667. https://doi.org/10.3390/pharmaceutics14122667 DOI: https://doi.org/10.3390/pharmaceutics14122667

[9] Y.-J. Son, M. Horng, M. Copley, J.T. McConville. Optimization of an in vitro dissolution test method for inhalation formulations. Dissolution Technologies 17 (2010) 6-13. https://doi.org/10.14227/DT170210P6 DOI: https://doi.org/10.14227/DT170210P6

[10] R.O. Cook, R.K. Pannu, I.W. Kellaway. Novel sustained release microspheres for pulmonary drug delivery. Journal of Control Release 104 (2005) 79-90. https://doi.org/10.1016/j.jconrel.2005.01.003 DOI: https://doi.org/10.1016/j.jconrel.2005.01.003

[11] R.O. Salama, D. Traini, H.K. Chan, A. Sung, A.J. Ammit, P.M. Young. Preparation and evaluation of controlled release microparticles for respiratory protein therapy. Journal of Pharmaceutical Sciences 98 (2009) 2709-2717. https://doi.org/10.1002/jps.21653. DOI: https://doi.org/10.1002/jps.21653

[12] F. Sonvico, V. Chierici, G. Varacca, E. Quarta, D. D'Angelo, B. Forbes, F. Buttini. RespiCell(TM): An Innovative Dissolution Apparatus for Inhaled Products. Pharmaceutics 13(10) (2021). 1541. https://doi.org/10.3390/pharmaceutics13101541. DOI: https://doi.org/10.3390/pharmaceutics13101541

[13] V. Patterlini, F. Guareschi, D. D’Angelo, S. Baldini, S. Meto, D. Mostafa Kamal, P. Fabrizzi, F. Buttini, R. Mösges, F. Sonvico. Clinically Relevant Characterization and Comparison of Ryaltris and Other Anti-Allergic Nasal Sprays. Pharmaceutics 16 (2024) 989. https://www.mdpi.com/1999-4923/16/8/989. DOI: https://doi.org/10.3390/pharmaceutics16080989

[14] M. Rohrschneider, S. Bhagwat, R. Krampe, V. Michler, J. Breitkreutz, G. Hochhaus. Evaluation of the Transwell System for Characterization of Dissolution Behavior of Inhalation Drugs: Effects of Membrane and Surfactant. Molecular Pharmaceutics 12 (2015) 2618-2624. https://doi.org/10.1021/acs.molpharmaceut.5b00221. DOI: https://doi.org/10.1021/acs.molpharmaceut.5b00221

[15] D. Arora, K.A. Shah, M.S. Halquist, M. Sakagami. In vitro aqueous fluid-capacity-limited dissolution testing of respirable aerosol drug particles generated from inhaler products. Pharmaceutical Research 27 (2010) 786-795. https://doi.org/10.1007/s11095-010-0070-5. DOI: https://doi.org/10.1007/s11095-010-0070-5

[16] F. Franek, R. Fransson, H. Thörn, P. Bäckman, P.U. Andersson, U. Tehler. Ranking in Vitro Dissolution of Inhaled Micronized Drug Powders including a Candidate Drug with Two Different Particle Sizes. Molecular Pharmaceutics 15 (2018) 5319-5326. https://doi.org/10.1021/acs.molpharmaceut.8b00796. DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00796

[17] N.M. Davies, M.R. Feddah. A novel method for assessing dissolution of aerosol inhaler products. International Journal of Pharmaceutics 255 (2003) 175-187. https://doi.org/10.1016/s0378-5173(03)00091-7 DOI: https://doi.org/10.1016/S0378-5173(03)00091-7

[18] J.T. McConville, N. Patel, N. Ditchburn, M.J. Tobyn, J.N. Staniforth, P. Woodcock. Use of a novel modified TSI for the evaluation of controlled-release aerosol formulations. I. Drug Development and Industrial Pharmacy 26 (2000) 1191-1198. https://doi.org/10.1081/ddc-100100991. DOI: https://doi.org/10.1081/DDC-100100991

[19] Y.-J. Son, J.T. McConville. Development of a standardized dissolution test method for inhaled pharmaceutical formulations. International Journal of Pharmaceutics 382 (2009) 15-22. https://doi.org/10.1016/j.ijpharm.2009.07.034 DOI: https://doi.org/10.1016/j.ijpharm.2009.07.034

[20] S. May, B. Jensen, M. Wolkenhauer, M. Schneider, C.M. Lehr. Dissolution techniques for in vitro testing of dry powders for inhalation. Pharmaceutical Research 29 (2012) 2157-2166. https://doi.org/10.1007/s11095-012-0744-2. DOI: https://doi.org/10.1007/s11095-012-0744-2

[21] P. Gerde, M. Malmlöf, L. Havsborn, C.-O. Sjöberg, P. Ewing, S. Eirefelt, K. Ekelund. DissolvIt: An In Vitro Method for Simulating the Dissolution and Absorption of Inhaled Dry Powder Drugs in the Lungs. Assay and Drug Development Technologies 15 (2017) 77-88. https://doi.org/10.1089/adt.2017.779. DOI: https://doi.org/10.1089/adt.2017.779

[22] Inhalation Sciences. DisolvIt: in vitro dissolution, https://www.inhalation.se/inhalation-research-services/dissolvit-in-vitro-dissolution/ . (Accessed: 12.06.2022.).

[23] P. Gerde, M. Malmlöf, E. Selg. In Vitro to ex Vivo/In Vivo Correlation (IVIVC) of dissolution kinetics from inhaled particulate solutes using air/blood barrier models: Relation between in vitro design, lung physiology and kinetic output of models. Journal of Aerosol Science 151 (2021) 105698. https://doi.org/10.1016/j.jaerosci.2020.105698 DOI: https://doi.org/10.1016/j.jaerosci.2020.105698

[24] S.P. Velaga, J. Djuris, S. Cvijic, S. Rozou, P. Russo, G. Colombo, A. Rossi. Dry powder inhalers: An overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products. European Journal of Pharmaceutical Sciences 113 (2018) 18-28. https://doi.org/10.1016/j.ejps.2017.09.002. DOI: https://doi.org/10.1016/j.ejps.2017.09.002

[25] B. Falade, C. Ehrhardt. In vitro dissolution testing methods for inhaled drugs. Istanbul Journal of Pharmacy 53 (2023) 239-250. https://doi.org/10.26650/IstanbulJPharm.2023.1005069 DOI: https://doi.org/10.26650/IstanbulJPharm.2023.1005069

[26] S. Radivojev, S. Zellnitz, A. Paudel, E. Fröhlich. Searching for physiologically relevant in vitro dissolution techniques for orally inhaled drugs. International Journal of Pharmaceutics 556 (2019) 45-56. https://doi.org/10.1016/j.ijpharm.2018.11.072. DOI: https://doi.org/10.1016/j.ijpharm.2018.11.072

[27] Elezović, S. Cvijić, A. Elezović, S. Pilipović, A. Uzunović, J. Parojčić. Contribution To Development of Discriminative Dissolution Method For Inhalation Preparations. in: B. Noszal (Ed.) XII Central European Symposium on Pharmaceutical Technology and Regulatory Affairs Szeged, Hungary, 2018, pp. 134-135. https://www.researchgate.net/publication/333392765_Contribution_to_development_of_discriminative_dissolution_method_for_inhalation_preparations

[28] M.N. Sahib, Y. Darwis, P.K. Khiang, Y.T. Fung Tan. Aerodynamic Characterization Of Beclomethasone Dipropionate from Beclate-50 Inhaler® by HPLC-UV. Journal of Liquid Chromatography & Related Technologies 34 (2011) 613-621. https://doi.org/10.1080/10826076.2011.557464. DOI: https://doi.org/10.1080/10826076.2011.557464

[29] E. Paczkowska, D. Smukowska, E. Tratkiewicz, P. Bialasiewicz. HPLC Method for Simultaneous Determination of Salmeterol Xinafoate and Fluticasone Propionate for the Quality Control of Dry Powder Inhalation Products. Acta Chromatographica 27 (2015.) 309-320. https://doi.org/10.1556/AChrom.27.2015.2.8. DOI: https://doi.org/10.1556/AChrom.27.2015.2.8

[30] P.T. Daley-Yates, A.C. Price, J.R. Sisson, A. Pereira, N. Dallow. Beclomethasone dipropionate: absolute bioavailability, pharmacokinetics and metabolism following intravenous, oral, intranasal and inhaled administration in man. British Journal of Clinical Pharmacology 51 (2001) 400-409. https://doi.org/10.1046/j.0306-5251.2001.01374.x. DOI: https://doi.org/10.1046/j.0306-5251.2001.01374.x

[31] A. Elezović, S. Cvijić, A. Elezović, S. Pilipović, J. Parojčić, Particle Deposition in Respiratory Tract: Where are the Limits?. In: A. Badnjevic, L. Gurbeta Pokvić, (eds.) CMBEBIH 2021. CMBEBIH 2021. IFMBE Proceedings, vol 84. Springer, Cham., pp. 638-644. https://doi.org/10.1007/978-3-030-73909-6_74 DOI: https://doi.org/10.1007/978-3-030-73909-6_74

[32] L.I. Harrison, S. Kurup, C. Wagner, B.P. Ekholm, J.S. Larson, H.B. Kaiser. Pharmacokinetics of beclomethasone 17-monopropionate from a beclomethasone dipropionate extrafine aerosol in adults with asthma. European Journal of Clinical Pharmacology 58 (2002) 197-201. https://doi.org/10.1007/s00228-002-0466-1. DOI: https://doi.org/10.1007/s00228-002-0466-1

[33] D. Singh, A. Piccinno, Z. Borrill, G. Poli, D. Acerbi, L. Meuleners, A. Woodcock. Tolerability of high cumulative doses of the HFA modulite beclomethasone dipropionate/formoterol combination inhaler in asthmatic patients. Pulmonary Pharmacology & Therapeutics 21 (2008) 551-557. https://doi.org/10.1016/j.pupt.2008.01.001. DOI: https://doi.org/10.1016/j.pupt.2008.01.001

[34] European Medicines Agency. Guideline On The Requirements For Clinical Documentation For Orally Inhaled Products (OIO) Including The Requirements For Demonstration Of Therapeutic Equivalence Between Two Inhaled Products For Use In The Treatment Of Asthma And Chronic Obstructive Pulmonary Disease (COPD) In Adults And For Use In The Treatment Of Asthma In Children And Adolescents. in: European Medicines Agency (Ed.) London, UK, 2009. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-requirements-clinical-documentation-orally-inhaled-products-including-requirements-demonstration-therapeutic-equivalence-between-two-inhaled-products-use-treatment-asthma-chronic-obstructive_en.pdf (Accessed: 28.04.2025.)

[35] B. Bake, P. Larsson, G. Ljungkvist, E. Ljungström, A.C. Olin. Exhaled particles and small airways. Respiratory Research 20 (2019) 8. https://doi.org/10.1186/s12931-019-0970-9. DOI: https://doi.org/10.1186/s12931-019-0970-9

[36] H. Bachofen, S. Schürch. Alveolar surface forces and lung architecture. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 129(1) (2001) 183-193. https://doi.org/10.1016/S1095-6433(01)00315-4. DOI: https://doi.org/10.1016/S1095-6433(01)00315-4

[37] A.W. Ng, A. Bidani, T.A. Heming. Innate Host Defense of the Lung: Effects of Lung-lining Fluid pH. Lung 182 (2004) 297-317. https://doi.org/10.1007/s00408-004-2511-6. DOI: https://doi.org/10.1007/s00408-004-2511-6

[38] C.B. Daniels, S. Orgeig. Pulmonary Surfactant: The Key to the Evolution of Air Breathing. News in physiological sciences 18 (2003) 151-157. https://doi.org/10.1152/nips.01438.2003. DOI: https://doi.org/10.1152/nips.01438.2003

[39] E. Innes, H.H.P. Yiu, P. McLean, W. Brown, M. Boyles. Simulated biological fluids – a systematic review of their biological relevance and use in relation to inhalation toxicology of particles and fibres. Critical Reviews in Toxicology 51 (2021) 217-248. https://doi.org/10.1080/10408444.2021.1903386. DOI: https://doi.org/10.1080/10408444.2021.1903386

[40] D.J. Phillips, S.R. Pygall, V.B. Cooper, J.C. Mann. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. Journal of Pharmacy and Pharmacology 64 (2012) 1549-1559. https://doi.org/10.1111/j.2042-7158.2012.01523.x. DOI: https://doi.org/10.1111/j.2042-7158.2012.01523.x

[41] Beclomethasone dipropionate, https://go.drugbank.com/drugs/DB00394 (Accessed 18.01.2021.).

[42] T. Riley, D. Christopher, J. Arp, A. Casazza, A. Colombani, A. Cooper, M. Dey, J. Maas, J. Mitchell, M. Reiners, N. Sigari, T. Tougas, S. Lyapustina. Challenges with developing in vitro dissolution tests for orally inhaled products (OIPs). AAPS PharmSciTech 13 (2012) 978-989. https://doi.org/10.1208/s12249-012-9822-3. DOI: https://doi.org/10.1208/s12249-012-9822-3

[43] J.Y.S. Tay, C.V. Liew, P.W.S. Heng. Dissolution of fine particle fraction from truncated Anderson cascade impactor with an enhancer cell. International Journal of Pharmaceutics 545 (2018) 45-50. https://doi.org/10.1016/j.ijpharm.2018.04.048. DOI: https://doi.org/10.1016/j.ijpharm.2018.04.048

[44] J.V. Fahy, B.F. Dickey. Airway mucus function and dysfunction. The New England Journal of Medicine 363 (2010) 2233-2247. https://doi.org/10.1056/NEJMra0910061. DOI: https://doi.org/10.1056/NEJMra0910061

[45] J. Varshosaz, M.R. Zaki, M. Minaiyan, J. Banoozadeh. Preparation, Optimization, and Screening of the Effect of Processing Variables on Agar Nanospheres Loaded with Bupropion HCl by a D-Optimal Design. BioMed Research International 2015 (2015) 571816. https://doi.org/10.1155/2015/571816. DOI: https://doi.org/10.1155/2015/571816

[46] D.S. Conti, J. Grashik, L. Yang, L. Wu, S.R.P. da Rocha. Solvation in hydrofluoroalkanes: how can ethanol help? Journal of Pharmacy and Pharmacology 64 (2012) 1236-1244. https://doi.org/10.1111/j.2042-7158.2011.01398.x. DOI: https://doi.org/10.1111/j.2042-7158.2011.01398.x

[47] G.T. Ferguson, A.J. Hickey, S. Dwivedi. Co-suspension delivery technology in pressurized metered-dose inhalers for multi-drug dosing in the treatment of respiratory diseases. Respiratory Medicine 134 (2018) 16-23. https://doi.org/10.1016/j.rmed.2017.09.012 DOI: https://doi.org/10.1016/j.rmed.2017.09.012

[48] A. Theophilus, A. Moore, D. Prime, S. Rossomanno, B. Whitcher, H. Chrystyn. Co-deposition of salmeterol and fluticasone propionate by a combination inhaler. International Journal of Pharmaceutics 313 (2006) 14-22. https://doi.org/10.1016/j.ijpharm.2006.01.018 DOI: https://doi.org/10.1016/j.ijpharm.2006.01.018

[49] S. Kirchberg, Y. Abdin, G. Ziegmann. Influence of particle shape and size on the wetting behavior of soft magnetic micropowders. Powder Technology 207 (2011) 311-317. https://doi.org/10.1016/j.powtec.2010.11.012 DOI: https://doi.org/10.1016/j.powtec.2010.11.012

[50] N. Yongjian, Y. Lan, Z. Shijie, C. Xueli. Wettability of Fine Ash from Opposed Multi-Burner Coal Water Slurry Gasification Journal of East China University of Science and Technology 47 (2021) 408-413. https://link.oversea.cnki.net/doi/10.14135/j.cnki.1006-3080.20200328001

[51] C.F. Lerk, A.J. Schoonen, J.T. Fell. Contact angles and wetting of pharmaceutical powders. Journal of Pharmaceutical Sciences 65 (1976): 843-847. https://doi.org/10.1002/jps.2600650611. DOI: https://doi.org/10.1002/jps.2600650611

[52] J. Eriksson, E. Sjögren, H. Thörn, K. Rubin, P. Bäckman, H. Lennernäs. Pulmonary absorption – estimation of effective pulmonary permeability and tissue retention of ten drugs using an ex vivo rat model and computational analysis. European Journal of Pharmaceutics and Biopharmaceutics 124 (2018) 1-12. https://doi.org/10.1016/j.ejpb.2017.11.013 DOI: https://doi.org/10.1016/j.ejpb.2017.11.013

[53] W. Möller, K. Häussinger, L. Ziegler-Heitbrock, J. Heyder. Mucociliary and long-term particle clearance in airways of patients with immotile cilia. Respiratory Research 7 (2006) 10. https://doi.org/10.1186/1465-9921-7-10. DOI: https://doi.org/10.1186/1465-9921-7-10

[54] R. Price, J. Shur, W. Ganley, G. Farias, N. Fotaki, D.S. Conti, R. Delvadia, M. Absar, B. Saluja, S. Lee. Development of an Aerosol Dose Collection Apparatus for In Vitro Dissolution Measurements of Orally Inhaled Drug Products. AAPS Journal 22 (2020) 47. https://doi.org/10.1208/s12248-020-0422-y. DOI: https://doi.org/10.1208/s12248-020-0422-y

[55] Beclomethasone 17-monopropionate, https://go.drugbank.com/drugs/DB14221 (Accessed: 18.01.2021.).

[56] Beclomethasone dipropionate, https://pubchem.ncbi.nlm.nih.gov/compound/Beclomethasone-dipropionate. (Accessed: 18.01.2021.).

[57] A.R. Boobis. Comparative physicochemical and pharmacokinetic profiles of inhaled beclomethasone dipropionate and budesonide. Respiratory Medicine 92 (1998) 2-6. https://doi.org/10.1016/s0954-6111(98)90434-6 DOI: https://doi.org/10.1016/S0954-6111(98)90434-6

[58] J.A. Yáñez, C.M. Remsberg, C.L. Sayre, M.L. Forrest, N.M. Davies. Flip-flop pharmacokinetics--delivering a reversal of disposition: challenges and opportunities during drug development. Therapeutic delivery 2 (2011) 643-672. https://doi.org/10.4155/tde.11.19. DOI: https://doi.org/10.4155/tde.11.19

[59] H. Boxenbaum. Pharmacokinetics tricks and traps: flip-flop models. Journal of pharmacy and pharmaceutical sciences 1 (1998) 90-91. https://sites.ualberta.ca/~csps/JPPS1(3)/H.Boxenbaum/flip-flop.htm (Accessed: 28.04.2025.)

[60] J.L. Davis, Chapter 2 - Pharmacologic Principles, in Equine Internal Medicine (Fourth Edition), S.M. Reed, W.M. Bayly, D.C. Sellon (Eds.), W.B. Saunders 2018, p. 79-137 978-0-323-44329-6. https://doi.org/10.1016/B978-0-323-44329-6.00002-4 DOI: https://doi.org/10.1016/B978-0-323-44329-6.00002-4

[61] G. Hochhaus, H. Möllmann, H. Derendorf, R.J. Gonzalez-Rothi. Pharmacokinetic/pharmacodynamic aspects of aerosol therapy using glucocorticoids as a model. Journal of clinical pharmacology. 37 (1997) 881-892. https://doi.org/10.1002/j.1552-4604.1997.tb04262.x. DOI: https://doi.org/10.1002/j.1552-4604.1997.tb04262.x

[62] J.E. Hastedt, P. Bäckman, A. Cabal, A. Clark, C. Ehrhardt, B. Forbes, A.J. Hickey, G. Hochhaus, W. Jiang, S. Kassinos, P.J. Kuehl, D. Prime, Y.J. Son, S. Teague, U. Tehler, J. Wylie. iBCS: 3. A Biopharmaceutics Classification System for Orally Inhaled Drug Products. Molecular Pharmaceutics 21 (2024) 164-172. https://doi.org/10.1021/acs.molpharmaceut.3c00685 DOI: https://doi.org/10.1021/acs.molpharmaceut.3c00685

Downloads

Published

04-09-2025

Issue

Section

Pharmaceutics

How to Cite

Development of a biorelevant dissolution method for inhalation products: Proof of concept using drugs with diverse solubilities: Original scientific article. (2025). ADMET and DMPK, 2861. https://doi.org/10.5599/admet.2861

Similar Articles

1-10 of 199

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)