Management of intraocular pressure and inflammation using febuxostat film: in vitro - in vivo correlation
Original scientific article
DOI:
https://doi.org/10.5599/admet.2601Keywords:
Anti-inflammation, Febuxostat, Hydrogel film, Intraocular pressure, in-vitro-in-vivo-correlationAbstract
Background and purpose: Urate crystal accumulation may lead to the condition of ocular tophaceous gout, causing ocular inflammation and increased intraocular pressure (IOP) due to the triggering of several inflammatory receptors like NLRP3, A2A, and TLR4. The study has been undertaken to manage intraocular pressure and inflammation using febuxostat (FBX) film formulation for sustained and improved activity, particularly for long-term tophaceous gout patients. Experimental approach: Hydroxypropyl methyl-cellulose K100 matrix-based hydrogel film of FBX has been fabricated in the presence of plasticizers like triethanolamine, dimethyl-sulphoxide (DMSO), or polyethylene glycol 600 using casting and evaporation technique. Carrageenan was injected into the upper palpebral region to induce ocular inflammation, and a normotensive rabbit eye model was used for monitoring IOP. Key results: Amorphization of the drug was observed from the differential scanning calorimetry and X-ray diffraction results. In vitro release study revealed an improved and diffusion-controlled sustained drug release for more than 5 h (62.69 to 84.76 %). Compared to its absence, decreased IOP was extended up to 5 h using film (with DMSO). Disappearance of ocular inflammation was also observed in the test animals after 2.5 h of film application, whereas acute inflammation was continued in the group without treatment for more than 4 h. Docking study revealed good binding interaction of drug and NLRP3, A2A, and TLR4 receptor. Conclusion: Febuxostat-loaded hydrogel-forming plasticized film could be utilized to better manage and control ocular inflammation and associated IOP, particularly in ocular tophaceous gout patients.
Downloads
References
K. Amirshahrokhi. Febuxostat attenuates ulcerative colitis by the inhibition of NF-κB, proinflam-matory cytokines, and oxidative stress in mice. International Immunopharmacology 76 (2019) 105884. https://doi.org/10.1016/j.intimp.2019.105884
A.N.A. Fahmi, G.S.G. Shehatou, A.M. Shebl, H.A. Salem. Febuxostat exerts dose-dependent renoprotection in rats with cisplatin-induced acute renal injury. Naunyn-Schmiedebergs Archive of Pharmacology 389 (2016) 819-830 2016. https://doi.org/10.1007/s00210-016-1258-y
B. Krishnamurthy, N. Rani, S. Bharti, M. Golechha, J. Bhatia, T. C. Nag, R. Ray, S. Arava, D.D. Arya. Febuxostat ameliorates doxorubicin-induced cardiotoxicity in rats. Chemico Biological Interactions 237 (2015) 96-103. https://doi.org/10.1016/j.cbi.2015.05.013
H. Kataoka, K. Yang, K.L. Rock. The xanthine oxidase inhibitor Febuxostat reduces tissue uric acid content and inhibits injury-induced inflammation in the liver and lung. European Journal of Pharmacology 746 (2015) 174-179. https://doi.org/10.1016/j.ejphar.2014.11.013
J. Sabán-Ruiz, A. Alonso-Pacho, M. Fabregate-Fuente, C. de la P. Gonzalez-Quevedo. Xanthine oxidase inhibitor febuxostat as a novel agent postulated to act against vascular inflammation. Anti-inflammatory & Anti-Allergy Agents in Medicinal Chemistry. (Formerly Current Medicinal Chemistry- Anti-Allergy Agents) 12 (2013) 94-99. https://doi.org/10.2174/187152313804998614
G. Hao, W. Duan, J. Sun, J. Liu, B. Peng. Effects of febuxostat on serum cytokines IL‑1, IL‑4, IL‑6, IL‑8, TNF‑α and COX‑2. Experimental and Therapeutic Medicine. 17 (2019) 812-816. https://doi.org/10.3892/etm.2018.6972
J. Nomura, N. Busso, A. Ives, S. Tsujimoto, M. Tamura, A. So, Y. Yamanaka. Febuxostat, an inhibitor of xanthine oxidase, suppresses lipopolysaccharide-induced MCP-1 production via MAPK phosphatase-1-mediated inactivation of JNK. PLoS One. 8 (2013) e75527. https://doi.org/10.1371/journal.pone.0075527
A.D. Millar, D.S. Rampton, C.L. Chander, A.W. Claxson, S. Blades, A. Coumbe, J. Panetta, C.J. Morris, D.R. Blake. Evaluating the antioxidant potential of new treatments for inflammatory bowel disease using a rat model of colitis. Gut 39 (1996) 407-415. https://doi.org/10.1136/gut.39.3.407
S. Gao, N. Li, Y. Wang, Y. Zhong, X. Shen. Blockade of adenosine A2A receptor protects photoreceptors after retinal detachment by inhibiting inflammation and oxidative stress. Oxidative Medicine and Cellular Longevity 2020 (2020) 7649080. https://doi.org/10.1155/2020/7649080
I.D. Aires, R. Boia, A.C. Rodrigues-Neves, M.H. Madeira, C. Marques, A.F. Ambrosio, A.R. Santiago. Blockade of microglial adenosine A2A receptor suppresses elevated pressure‐induced inflammation, oxidative stress, and cell death in retinal cells. Glia 67 (2019) 896-914. https://doi.org/10.1002/glia.23579
M.H. Madeira, K. Rashid, A.F. Ambrósio, A.R. Santiago, T. Langmann. Blockade of microglial adenosine A2A receptor impacts inflammatory mechanisms, reduces ARPE-19 cell dysfunction and prevents photoreceptor loss in vitro. Scientific Reports 8 (2018) 2272. https://doi.org/10.1038/s41598-018-20733-2
F. Diomede, L. Fonticoli, S. Guarnieri, Y.D. Rocca, T.S. Rajan, A. Fontana, O. Trubiani, G.D. Marconi, J. Pizzicannella. The effect of liposomal curcumin as an anti-inflammatory strategy on lipopolysaccharide e from porphyromonas gingivalis treated endothelial committed neural crest derived stem cells: morphological and molecular mechanisms. International Journal of Molecular Sciences 22 (2021) 7534. https://doi.org/10.3390/ijms22147534
R.L. Redfern, S. Barabino, J. Baxter, C. Lema, A.M. McDermott. Dry eye modulates the expression of toll-like receptors on the ocular surface. Experimental Eye Research 134 (2015) 80-89. https://doi.org/10.1016/j.exer.2015.03.018
S.S. Chrai, J.R. Robinson. Ocular evaluation of methylcellulose vehicle in albino rabbits. Journal of Pharmaceutical Sciences 63 (1974) 1218-1223. https://doi.org/10.1002/jps.2600630810
T.F. Patton, J.R. Robinson. Ocular evaluation of polyvinyl alcohol vehicle in rabbits. Journal of Pharmaceutical Sciences 64 (1975) 1312-1316. https://doi.org/10.1002/jps.2600640811
J.S. Boateng, A.M. Popescu. Composite bi-layered erodible films for potential ocular drug delivery. Colloids and Surfaces B 145 (2016) 353-361. https://doi.org/10.1016/j.colsurfb.2016.05.014
A. Nanda, R.N. Sahoo, A. Pramanik, R. Mohapatra, S. K. Pradhan, A. Thirumuragan, D. Das, S. Mallick. Drug-in-mucoadhesive type film for ocular anti-inflammatory potential of amlodipine: Effect of sulphobutyl-ether-beta-cyclodextrin on permeation and molecular docking characterization. Colloids and Surfaces B 172 (2018) 555-564. https://doi.org/10.1016/j.colsurfb.2018.09.011
R. Mohapatra, S. Mallick, A. Nanda, R. N. Sahoo, A. Pramanik, A. Bose, L. Pattnaik. Analysis of steady state and non-steady state corneal permeation of diclofenac. RSC Advances 6 (2016) 31976-31987. https://doi.org/10.1039/C6RA03604J
A. Ludwig. The use of mucoadhesive polymers in ocular drug delivery. Advanced Drug Delivery Reviews 57 (2005) 1595-1639. https://doi.org/10.1016/j.addr.2005.07.005
R. Swain, A. Moharana, S. Habibullah, S. Nandi, A. Bose, S. Mohapatra, S. Mallick. Ocular delivery of felodipine for the management of intraocular pressure and inflammation: Effect of film plasticizer and in vitro in vivo evaluation. International Journal of Pharmaceutics 642 (2023) 123153. https://doi.org/10.1016/j.ijpharm.2023.123153
M. Tayyab, M.T. Haseeb, T.G. Alsahli, N. U. Khaliq, M.A., Hussain, R. Khan, A. Nawaz, A. Iqbal, A.S. Alanazi, S.N.A. Bukhari. Fabrication and optimization of febuxostat-loaded chitosan nanocarriers for better pharmacokinetics profile. International Journal of Biological Macromolecules 257 (2024) 1284. https://doi.org/10.1016/j.ijbiomac.2023.128448
A. Kini, S.B. Patel. Phase behavior, intermolecular interaction, and solid state characterization of amorphous solid dispersion of Febuxostat. Pharmaceutical Development and Technology 22 (2017) 45-57. https://doi.org/10.3109/10837450.2016.1138130
B. K. Ahuja, S.K. Jena, S.K. Paidi, S. Bagri, S. Suresh. Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension. International Journal of Pharmaceutics 478 (2015) 540-552. https://doi.org/10.1016/j.ijpharm.2014.12.003
J. Tang, J. Bao, X. Shi, X. Sheng, W. Su. Preparation, optimisation, and in vitro-in vivo evaluation of febuxostat ternary solid dispersion. Journal of Microencapsulation 35 (2018) 454-466. https://doi.org/10.1080/02652048.2018.1526339
V.P. Patel, A.P. Patel, A. Shah. Optimization of amorphous solid dispersion techniques to enhance solubility of febuxostat. Folia Medica 63 (2021) 557-568. https://doi.org/10.3897/folmed.63.e55838
R. Swain, S. Nandi, R.N. Sahoo, S.S. Swain, S. Mohapatra, S. Mallick. Bentonite clay incorporated topical film formulation for delivery of trimetazidine: Control of ocular pressure and in vitro-in vivo correlation. Journal of Drug Delivery Science and Technology 67 (2022) 102956. https://doi.org/10.1016/j.jddst.2021.102956
R.B. Chavan, R. Thipparaboina, D. Kumar, N.R. Shastri. Evaluation of the inhibitory potential of HPMC, PVP and HPC polymers on nucleation and crystal growth. RSC Advances 6 (2016) 77569-77576. https://doi.org/10.1039/C6RA19746A
T.W. Steele, C.L. Huang, E. Widjaja, F.Y. Boey, J.S. Loo, S.S. Venkatraman. The effect of polyethylene glycol structure on paclitaxel drug release and mechanical properties of PLGA thin films. Acta Biomaterialia 7 (2011) 1973-1983. https://doi.org/10.1016/j.actbio.2011.02.002
S.M. Jusu, J.D. Obayemi, A.A. Salifu, C.C. Nwazojie, V. Uzonwanne, O.S. Odusanya, W.O. Soboyejo. Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Scientific Reports 10 (2020)14188. https://doi.org/10.1038/s41598-020-71129-0
A. Otterbach, A. Lamprecht. Enhanced skin permeation of estradiol by dimethyl sulfoxide containing transdermal patches. Pharmaceutics 13 (2021) 320. https://doi.org/10.3390/pharmaceutics13030320
K. Rubini, E. Boanini, A. Menichetti, F. Bonvicini, G.A. Gentilomi, M. Montalti, A. Bigi. Quercetin loaded gelatin films with modulated release and tailored anti-oxidant, mechanical and swelling properties. Food Hydrocolloids 109 (2020) 106089. https://doi.org/10.1016/j.foodhyd.2020.106089
T. Ur-Rehman, S. Tavelin, G. Gröbner. Effect of DMSO on micellization, gelation and drug release profile of Poloxamer 407. International Journal of Pharmaceutics 394 (2010) 92-98. https://doi.org/10.1016/j.ijpharm.2010.05.012
A. Nanda, R.N. Sahoo, M. Gour, S.K. Swain, D. Das, A.K. Nayak, S. Mallick. Amlodipine Ocular Delivery Restores Ferning Patterns and Reduces Intensity of Glycosylated Peak of Carrageenan-Induced Tear Fluid: An In-Silico Flexible Docking with IL-1. Current Drug Delivery 21 (2024) 1375-1385. https://doi.org/10.2174/0115672018264980231017115829
Published
Issue
Section
License
Copyright (c) 2025 Mouli Das, Sk Habibullah , Tanisha Das, Rakesh Swain, Subrata Mallick

This work is licensed under a Creative Commons Attribution 4.0 International License.