Reinforced concrete corrosion; Mechanism, challenges, prospective, and future roadmap

Review paper

Authors

  • Aref Shokri Jundi-Shapur Research Institute, Jundi-Shapur University of Technology, Dezful, Iran, and Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran https://orcid.org/0000-0001-7102-6003

DOI:

https://doi.org/10.5599/jese.2820

Keywords:

Concrete degradation, steel rebar corrosion, corrosion mitigation, corrosion inhibitors, coatings

Abstract

One of the significant durability challenges is the corrosion of reinforced concrete, which significantly reduces its service life. Due to the ever-growing requirement for extended service periods of infrastructure, its cost-intensive maintenance procedures, substantial economic losses, and adverse environmental effects, developing state-of-the-art methods for repairing corrosion failures in concrete structures is essential. In general, traditional and electrochemical methods are two broad categories for fixing corrosion-induced damages in concrete structures. Nonetheless, because each of these solutions has its own restrictions along with its benefits, an integration of these mitigation strategies is suggested to reach the maximum threshold in preventing corrosion damage. In this critical review paper, the mechanism and mitigation strategies of corrosion in reinforced concrete are thoroughly discussed. Moreover, special emphasis was given to the challenges and future trends in reinforced concrete corrosion. The results of this paper demonstrate that further research is needed to develop solutions that can prevent the negative effects of reinforced concrete corrosion in a manner that is maximally sustainable, durable, environmentally benign, and economically feasible.

Downloads

Download data is not yet available.

References

[1] M. Daniyal, S. Akhtar, Corrosion assessment and control techniques for reinforced concrete structures: a review, Journal of Building Pathology and Rehabilitation 5 (2020) 1. https://doi.org/10.1007/s41024-019-0067-3 DOI: https://doi.org/10.1007/s41024-019-0067-3

[2] A. Michel, M. Otieno, H. Stang, M.R. Geiker, Propagation of steel corrosion in concrete: Experimental and numerical investigations, Cement and Concrete Composites 70 (2016) 171-182. https://doi.org/10.1016/j.cemconcomp.2016.04.007 DOI: https://doi.org/10.1016/j.cemconcomp.2016.04.007

[3] A. Goyal, H.S. Pouya, E. Ganjian, P. Claisse, A Review of Corrosion and Protection of Steel in Concrete, Arabian Journal for Science and Engineering 43 (2018) 5035-5055. https://doi.org/10.1007/s13369-018-3303-2 DOI: https://doi.org/10.1007/s13369-018-3303-2

[4] B. N. Popov, Corrosion Engineering: Principles and Solved Problems, Elsevier, 2015. https://doi.org/10.1016/C2012-0-03070-0 DOI: https://doi.org/10.1016/C2012-0-03070-0

[5] A. Shokri, M. Sanavi Fard, Under deposit corrosion failure: mitigation strategies and future roadmap, Chemical Papers 77 (2023) 1773-1790. https://doi.org/10.1007/s11696-022-02601-6 DOI: https://doi.org/10.1007/s11696-022-02601-6

[6] A.G. Razaqpur, O.B. Isgor, Prediction of reinforcement corrosion in concrete structures, in: Frontier Technologies for Infrastructures Engineering, CRC Press, 2009, 45-68. ISBN: 9780429206832 DOI: https://doi.org/10.1201/9780203875599.ch3

[7] V. Cicek, Corrosion Engineering and Cathodic Protection Handbook, Scrivener Publ. LLC, 2017. https://doi.org/10.1002/9781119284338 DOI: https://doi.org/10.1002/9781119284338

[8] P. Barnes, J. Bensted, Chloride corrosion in cementitious system, in Structure and Performance of Cement, 2nd Edition, CRC Press, 2019, 313-327. https://doi.org/10.1201/9781482295016-17 DOI: https://doi.org/10.1201/9781482295016-17

[9] C. G. Berrocal, K. Lundgren, I. Löfgren, Corrosion of steel bars embedded in fibre reinforced concrete under chloride attack: State of the art, Cement and Concrete Research 80 (2016) 69-85. https://doi.org/10.1016/j.cemconres.2015.10.006 DOI: https://doi.org/10.1016/j.cemconres.2015.10.006

[10] G. Ebell, A. Burkert, J. Fischer, J. Lehmann, T. Müller, D. Meinel, O. Paetsch, Investigation of chloride-induced pitting corrosion of steel in concrete with innovative methods, Material Corrossion 67 (2016) 583-590. https://doi.org/10.1002/maco.201608969. DOI: https://doi.org/10.1002/maco.201608969

[11] A. Shokri, M. Sanavi Fard, Corrosion in seawater desalination industry: A critical analysis of impacts and mitigation strategies, Chemosphere 307 (2022) 135640. https://doi.org/10.1016/j.chemosphere.2022.135640 DOI: https://doi.org/10.1016/j.chemosphere.2022.135640

[12] J.P. Broomfield, Corrosion of Steel in Concrete: Understanding, Investigation and Repair, 2nd Edition, CRC Press, 2003, 296. https://doi.org/10.1201/9781482265491 DOI: https://doi.org/10.1201/9781482265491

[13] U.M. Angst, Challenges and opportunities in corrosion of steel in concrete, Materials and Structures 51 (2018) 4. https://doi.org/10.1617/s11527-017-1131-6 DOI: https://doi.org/10.1617/s11527-017-1131-6

[14] G.K. Glass, N.R. Buenfeld, Chloride-induced corrosion of steel in concrete, Progress in Structural Engineering and Materials 2 (2000) 448-458. https://doi.org/10.1002/pse.54 DOI: https://doi.org/10.1002/pse.54

[15] J. Huang, A. Wang, Effective chloride removal in reinforced concrete using electrochemical method in the presence of calcium nitrite, International Journal of Electrochemical Science 11 (2016) 4667-4674. https://doi.org/10.20964/2016.06.53 DOI: https://doi.org/10.20964/2016.06.53

[16] M.R. Geiker, R.B. Polder, Experimental support for new electro active repair method for reinforced concrete, Material Corrossion 67 (2016) 600-606. https://doi.org/10.1002/maco.201608942 DOI: https://doi.org/10.1002/maco.201608942

[17] E. Redaelli, L. Bertolini, Electrochemical repair techniques in carbonated concrete. Part I: Electrochemical realkalisation, Journal of Applied Electrochemistry 41 (2011) 817-827. https://doi.org/10.1007/s10800-011-0301-4 DOI: https://doi.org/10.1007/s10800-011-0301-4

[18] B. Elsener, U. Angst, Mechanism of electrochemical chloride removal, Corrossion Science 49 (2007) 4504-4522. https://doi.org/10.1016/j.corsci.2007.05.019 DOI: https://doi.org/10.1016/j.corsci.2007.05.019

[19] R.B. Polder, W.H.A. Peelen, B.T.J. Stoop, E.A.C. Neeft, Early stage beneficial effects of cathodic protection in concrete structures, Material Corrossion 62 (2011) 105-110. https://doi.org/10.1002/maco.201005803 DOI: https://doi.org/10.1002/maco.201005803

[20] J. Drewett, J. Broomfield, An Introduction to Electrochemical Rehabilitation Techniques, Technical Note 2, Corrosion Prevention Association, UK, 2002. ISBN: 9781870409995

[21] L. Bertolini, B. Elsener, P. Pedeferri, R. Polder, Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, Wiley, 2003. https://doi.org/10.1002/3527603379 DOI: https://doi.org/10.1002/3527603379

[22] A. Byrne, B. Norton, N. Holmes, State-of-the-art review of cathodic protection for reinforced concrete structures, Magazine of Concrete Research 68 (2016) 664-677. https://doi.org/10.1680/jmacr.15.00083 DOI: https://doi.org/10.1680/jmacr.15.00083

[23] L. Bertolini, F. Bolzoni, P. Pedeferri, L. Lazzari, T. Pastore, Cathodic protection and cathodic prevention in concrete: Principles and applications, Journal of Applied Electrochemistry 28 (1998) 1321-1331. https://doi.org/10.1023/A:1003404428827 DOI: https://doi.org/10.1023/A:1003404428827

[24] J. Broomfield, Anode selection for protection of reinforced concrete structures, Material Performance 46 (2007) 26-30. https://doi.org/10.5006/MP2007_46_1-26 DOI: https://doi.org/10.5006/MP2007_46_1-26

[25] D.L. Leng, Cathodic protection on steel reinforced concrete marine structures, NACE - Proceedings, Corrosion 2017, C2017-09219. https://doi.org/10.5006/C2017-09219 DOI: https://doi.org/10.5006/C2017-09219

[26] D.A. Koleva, J.H.W. de Wit, K. van Breugel, Z.F. Lodhi, G. Ye, Investigation of Corrosion and Cathodic Protection in Reinforced Concrete, Journal of The Electrochemical Society 154 (2007) C261. https://doi.org/10.1149/1.2715313 DOI: https://doi.org/10.1149/1.2715313

[27] R.B. Polder, D. Worm, W. Courage, G. Leegwater, Performance and working life of cathodic protection systems for concrete structures, in: Concrete Solutions 2011, CRC Press, 2012. ISBN: 9780429217258 DOI: https://doi.org/10.1201/b11570-25

[28] NACE SP0216, Sacrificial Cathodic Protection of Reinforcing Steel in Atmospherically Exposed Concrete Structures, NACE International, 2016. ISBN 1-57590-331-8

[29] K. Darowicki, J. Orlikowski, S. Cebulski, S. Krakowiak, Conducting coatings as anodes in cathodic protection, Progress in Organic Coatings 46 (2003) 191-196. https://doi.org/10.1016/S0300-9440(03)00003-1 DOI: https://doi.org/10.1016/S0300-9440(03)00003-1

[30] I.R. Lasa, M. Islam, M. Duncan, Galvanic cathodic protection for high resistance concrete in marine environments, NACE - Proceedings, Corrosion 2017, C2017-09700. https://doi.org/10.5006/C2017-09700 DOI: https://doi.org/10.5006/C2017-09700

[31] K. Wilson, M. Jawed, V. Ngala, The selection and use of cathodic protection systems for the repair of reinforced concrete structures, Construction and Building Materials 39 (2013) 19-25. https://doi.org/10.1016/j.conbuildmat.2012.05.037 DOI: https://doi.org/10.1016/j.conbuildmat.2012.05.037

[32] G.K. Glass, A.C. Roberts, N. Davison, Hybrid corrosion protection of chloride-contaminated concrete, Proceedings of the Institution of Civil Engineers - Construction Materials 161 (2008) 163-172. https://doi.org/10.1680/coma.2008.161.4.163 DOI: https://doi.org/10.1680/coma.2008.161.4.163

[33] BSI Standards Publication, Electrochemical realkalization and chloride extraction treatments for reinforced concrete, BSN 14038-1:2016. ISBN: 9780539206043

[34] W. Yeih, J.J. Chang, A study on the efficiency of electrochemical realkalisation of carbonated concrete, Construction and Building Materials 19 (2005) 516-524. 4https://doi.org/10.1016/j.conbuildmat.2005.01.006 DOI: https://doi.org/10.1016/j.conbuildmat.2005.01.006

[35] M. Sánchez, M.C. Alonso, Electrochemical chloride removal in reinforced concrete structures: Improvement of effectiveness by simultaneous migration of calcium nitrite, Construction and Building Materials 25 (2011) 873-878. https://doi.org/10.1016/j.conbuildmat.2010.06.099 DOI: https://doi.org/10.1016/j.conbuildmat.2010.06.099

[36] S. Yehia, J. Host, Conductive concrete for cathodic protection of bridge decks, ACI Materials Journal 107 (2010) 577-585. https://doi.org/10.14359/51664044 DOI: https://doi.org/10.14359/51664044

[37] NACE SP 0107-2017, Electrochemical Realkalization and Chloride Extraction for Reinforced Concrete, NACE International, 2017. ISBN 1-57590-210-9

[38] M. Mohadesi, M. Sanavi Fard, A. Shokri, The application of modified nano-TiO2 photocatalyst for wastewater treatment: A review, International Journal of Environmental Analytical Chemistry 104 (2024) 2571-2592. https://doi.org/10.1080/03067319.2022.2064751 DOI: https://doi.org/10.1080/03067319.2022.2064751

[39] T.D. Marcotte, C.M. Hansson, B.B. Hope, The effect of the electrochemical chloride extraction treatment on steel-reinforced mortar: Part I: Electrochemical measurements, Cement and Concrete Research 29 (1999) 1555-1560. https://doi.org/10.1016/S0008-8846(99)00118-0 DOI: https://doi.org/10.1016/S0008-8846(99)00118-0

[40] Y. Liu, X. Shi, Electrochemical Chloride Extraction and Electrochemical Injection of Corrosion Inhibitor in Concrete: State of the Knowledge, Corrosion Review 27 (2011) 53-82. https://doi.org/10.1515/corrrev.2009.27.1-2.53 DOI: https://doi.org/10.1515/CORRREV.2009.27.1-2.53

[41] V. Saraswathy, H.S. Lee, S. Karthick, S.J. Kwon, Extraction of chloride from chloride contaminated concrete through electrochemical method using different anodes, Construction and Building Materials 158 (2018) 549-562. https://doi.org/10.1016/j.conbuildmat.2017.10.052 DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.052

[42] P.F. Marques, A. Costa, Service life of RC structures: Carbonation induced corrosion. Prescriptive vs. performance-based methodologies, Construction and Building Materials 24 (2010) 258-265. https://doi.org/10.1016/j.conbuildmat.2009.08.039 DOI: https://doi.org/10.1016/j.conbuildmat.2009.08.039

[43] P.H.L.C. Ribeiro, G.R. Meira, P.R.R. Ferreira, N. Perazzo, Electrochemical realkalisation of carbonated concretes-Influence of material characteristics and thickness of concrete reinforcement cover, Construction and Building Materials 40 (2013) 280-290. https://doi.org/10.1016/j.conbuildmat.2012.09.076 DOI: https://doi.org/10.1016/j.conbuildmat.2012.09.076

[44] K. Xu, S. Ren, J. Song, J. Liu, Z, Liu, J. Sun, S. Ling,Colorful superhydrophobic concrete coating, Chemical Engineering Journal 403 (2021) 126348. https://doi.org/10.1016/j.cej.2020.126348 DOI: https://doi.org/10.1016/j.cej.2020.126348

[45] A.C.I. Committee 440, Report on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures, ACI 440R-07, American Concrete Instutute, 2007. ISBN: 9780870312595

[46] G. Wu, Z.-Q. Dong, X. Wang, Y. Zhu, Z.-S. Wu, Prediction of Long-Term Performance and Durability of BFRP Bars under the Combined Effect of Sustained Load and Corrosive Solutions, Journal of Composites for Construction 19 (2015). https://doi.org/10.1061/(asce)cc.1943-5614.0000517 DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000517

[47] Guidance on the use of stainless steel reinforcement, Technical Report 51, Concrete Society, UK, 1998. ISBN: 9780946691692

[48] S. Qian, D. Qu, G. Coates, Galvanic coupling between carbon steel and stainless steel reinforcements, Canadian Metallurgical Quarterly Journal 45 (2006) 475-484. https://doi.org/10.1179/000844306794408724 DOI: https://doi.org/10.1179/000844306794408724

[49] P.B. Raja, M. Ismail, S. Ghoreishiamiri, J. Mirza, M.C. Ismail, S. Kakooei, A.A. Rahim, Reviews on Corrosion Inhibitors: A short view, Chemical Engineering Communications 203 (2016) 1145-1156. https://doi.org/10.1080/00986445.2016.1172485 DOI: https://doi.org/10.1080/00986445.2016.1172485

[50] T.A. Söylev, M.G. Richardson, Corrosion inhibitors for steel in concrete: State-of-the-art report, Construction and Building Materials 22 (2008) 609-622. https://doi.org/10.1016/j.conbuildmat.2006.10.013 DOI: https://doi.org/10.1016/j.conbuildmat.2006.10.013

[51] A.C.I. Committee 222, Protection of Metals in Concrete Against Corrosion, ACI 222R-01 American Concrete Institute, 2001. http://civilwares.free.fr/ACI/MCP04/222r_01.pdf

[52] H.-S. Lee, V. Saraswathy, S.-J. Kwon, S. Karthick, Corrosion Inhibitors for Reinforced Concrete: A Review, in: Corrosion Inhibitors, Principles and Recent Applications, M. Aliofkhazraei Ed., IntechOpen, 2018. https://doi.org/10.5772/intechopen.72572 DOI: https://doi.org/10.5772/intechopen.72572

[53] X. Pei, M. Noël, M. Green, A. Fam, G. Shier, Cementitious coatings for improved corrosion resistance of steel reinforcement, Surface and Coatings Technology 315 (2017) 188-195. https://doi.org/10.1016/j.surfcoat.2017.02.036 DOI: https://doi.org/10.1016/j.surfcoat.2017.02.036

[54] B.G. Callaghan, The performance of a 12% chromium steel in concrete in severe marine environments, Corrosion Science 35 (1993) 1535-1541. https://doi.org/10.1016/0010-938X(93)90381-P DOI: https://doi.org/10.1016/0010-938X(93)90381-P

[55] W.A. Pyc, R.E. Weyers, M.M. Sprinkel, Corrosion Protection Performance of Corrosion Inhibitors and Epoxy-Coated Reinforcing Steel in a Simulated Concrete Pore Water Solution, Final Report VTR 98 R42, Virginia Transportation Research Council, 1998. https://rosap.ntl.bts.gov/view/dot/15588/dot_15588_DS1.pdf

[56] B. Holland, P. Alapati, K.E. Kurtis, L. Kahn, Effect of different concrete materials on the corrosion of the embedded reinforcing steel in: Corrosion of Steel in Concrete Structures (second Edition) (2023) 199-218. https://doi.org/10.1016/b978-0-12-821840-2.00007-9 DOI: https://doi.org/10.1016/B978-0-12-821840-2.00007-9

[57] L. Burris, K. Kurtis, T. Morton, Novel Alternative Cementitious Materials for Development of the Next Generation of Sustainable Transportation Infrastructure, Technical Report FHWA-HRT-16-017, 2014. https://www.fhwa.dot.gov/publications/research/ear/16017/index.cfm

[58] C. McCague, Y. Bai, Q. Zhou, P.A.M. Basheer, Effect of calcium sulfates on the early hydration of calcium sulfoaluminate cement and the stability of embedded aluminium, In: NUWCEM 2014. Second International Symposium on Cement-Based Materials for Nuclear Wastes (NUWCEM2014), (2014) 1-12. https://eprints.whiterose.ac.uk/id/oai_id/oai:eprints.whiterose.ac.uk:113982

[59] C.W. Hargis, B. Lothenbach, C.J. Müller, F. Winnefeld, Further insights into calcium sulfoaluminate cement expansion, Advances in Cement Research 31 (2019) 160-177. https://doi.org/10.1680/jadcr.18.00124 DOI: https://doi.org/10.1680/jadcr.18.00124

[60] Z. Shi, B. Lothenbach, The role of calcium on the formation of alkali-silica reaction products, Cement and Concrete Research 126 (2019) 105898. https://doi.org/10.1016/j.cemconres.2019.105898 DOI: https://doi.org/10.1016/j.cemconres.2019.105898

[61] P. Alapati, K.E. Kurtis, Carbonation in alternative cementitious materials: Implications on durability and mechanical properties, 6th International Conference on Durability of Concrete Structures, ICDCS 2018, University of Leeds, Leeds, UK, ICC02 (2018) 111-119. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1313&context=icdcs

[62] L. Fernández-Carrasco, D. Torréns-Martín, S. Martínez-Ramírez, Carbonation of ternary building cementing materials, Cement and Concrete Composites 34 (2012) 1180-1186. https://doi.org/10.1016/j.cemconcomp.2012.06.016 DOI: https://doi.org/10.1016/j.cemconcomp.2012.06.016

[63] P. Alapati, M.K. Moradllo, N. Berke, M.T. Ley, K.E. Kurtis, Designing corrosion resistant systems with alternative cementitious materials, Cement 8 (2022) 100029. https://doi.org/10.1016/j.cement.2022.100029 DOI: https://doi.org/10.1016/j.cement.2022.100029

[64] B. A. Graybeal, Material Property Characterization of Ultra-High Performance Concrete, Technical Report FHWA-HRT-06-103, 2006. https://www.fhwa.dot.gov/publications/research/infrastructure/structures/06103/06103.pdf

[65] R.B. Holland, R. Moser, L. Kahn, P. Singh, K. Kurtis, Durability of Precast Prestressed Concrete Piles in Marine Environment, Part 2, Volume 1, Concrete, Final Report FHWA-GA-12-1026, 2012. https://rosap.ntl.bts.gov/view/dot/26629

[66] S. Zhutovsky, S. Nayman, Modeling of crack-healing by hydration products of residual cement in concrete, Construction and Building Materials 340 (2022) 127682. https://doi.org/10.1016/J.CONBUILDMAT.2022.127682 DOI: https://doi.org/10.1016/j.conbuildmat.2022.127682

Downloads

Published

16-08-2025

Issue

Section

Corrosion

How to Cite

Reinforced concrete corrosion; Mechanism, challenges, prospective, and future roadmap: Review paper. (2025). Journal of Electrochemical Science and Engineering, 15(5), 2820. https://doi.org/10.5599/jese.2820

Similar Articles

1-10 of 184

You may also start an advanced similarity search for this article.